
19
Stream I/O &

C++20 Text Formatting

O b j e c t i v e s
In this chapter, you’ll:
■ Use C++ object-oriented stream input/output.
■ Input and output individual characters.
■ Use unformatted I/O for high performance.
■ Use stream manipulators to display integers in octal and

hexadecimal formats.
■ Specify precision for input and output.
■ Display floating-point values in scientific and fixed-point

notation.
■ Set and restore the format state.
■ Control alignment and padding.
■ Determine the success or failure of input/output operations.
■ Tie output streams to input streams.
■ See many of C++20’s concise and convenient text-formatting

capabilities, including presentation types to specify data types
to format, positional arguments, field widths, alignment,
numeric formatting and using placeholders to specify field
widths and precisions.

pp p _ _ g y, p ,

19.2 Chapter 19 Stream I/O & C++20 Text Formatting

O
ut

lin
e

19.1 Introduction
This chapter discusses input/output formatting capabilities. First, we present the I/O
streams formatting capabilities that you’re likely to see in C++ legacy code. Then, we dis-
cuss features from C++20’s new text-formatting capabilities. In Section 19.9, you’ll see
that C++20 text formatting is more concise and convenient than the I/O streams format-
ting capabilities presented in Section 19.6.

C++ uses type-safe I/O. Each I/O operation is executed in a manner sensitive to the
data type. If an I/O function has been defined to handle a particular data type, then that
function is called to handle that data type. If there is no match between the type of the
actual data and a function for handling data of that type, the compiler generates an error.
Thus, improper data cannot “sneak” through the system. As you saw in Chapter 11, you
can specify how to perform I/O for objects of user-defined types by overloading the stream
insertion operator (<<) and the stream extraction operator (>>).

19.2 Streams
C++ I/O occurs in streams, which are sequences of bytes. In input operations, the bytes
flow from a device (e.g., a keyboard, a disk drive, a network connection) to main memory.
In output operations, bytes flow from main memory to a device (e.g., a display screen, a
printer, a disk drive, a network connection).

19.1 Introduction
19.2 Streams

19.2.1 Classic Streams vs. Standard Streams
19.2.2 iostream Library Headers
19.2.3 Stream Input/Output Classes and

Objects
19.3 Stream Output

19.3.1 Output of char* Variables
19.3.2 Character Output Using Member

Function put
19.4 Stream Input

19.4.1 get and getline Member Functions
19.4.2 istream Member Functions peek,

putback and ignore
19.5 Unformatted I/O Using read, write

and gcount
19.6 Stream Manipulators

19.6.1 Integral Stream Base (dec, oct, hex
and setbase)

19.6.2 Floating-Point Precision
(setprecision, precision)

19.6.3 Field Width (width, setw)
19.6.4 User-Defined Output Stream

Manipulators
19.6.5 Trailing Zeros and Decimal Points

(showpoint)

19.6.6 Alignment (left, right and
internal)

19.6.7 Padding (fill, setfill)
19.6.8 Integral Stream Base (dec, oct, hex,

showbase)
19.6.9 Floating-Point Numbers; Scientific

and Fixed Notation (scientific,
fixed)

19.6.10 Uppercase/Lowercase Control
(uppercase)

19.6.11 Specifying Boolean Format
(boolalpha)

19.6.12 Setting and Resetting the Format State
via Member Function flags

19.7 Stream Error States
19.8 Tying an Output Stream to an Input

Stream
19.9 C++20 Text Formatting

19.9.1 C++20 std::format Presentation
Types

19.9.2 C++20 std::format Field Widths
and Alignment

19.9.3 C++20 std::format Numeric
Formatting

19.9.4 C++20 std::format Field Width
and Precision Placeholders

19.10 Wrap-Up

20

pp p _ _ g y, p ,

19.2 Streams 19.3

An application associates meaning with bytes. The bytes could represent characters,
raw data, graphics images, audio, video or other information an application requires. The
system I/O mechanisms transfer bytes from devices to memory and vice versa. The time
these transfers take typically is far greater than the time the processor requires to manipu-
late data in memory. I/O operations require careful planning and tuning to ensure optimal
performance.

C++ provides both “low-level” and “high-level” I/O capabilities. Low-level unformat-
ted I/O capabilities specify that some number of bytes should be transferred device-to-
memory or memory-to-device. In such transfers, the individual byte is the item of interest.
Such low-level capabilities provide high-speed, high-volume transfers but are not particu-
larly convenient. Higher-level formatted I/O groups bytes into meaningful units, such as
integers, floating-point numbers, characters, strings and custom types.

19.2.1 Classic Streams vs. Standard Streams
C++’s classic stream libraries originally supported only char-based I/O. Because a char
occupies one byte, it can represent only a limited set of characters, such as those in the
ASCII character set. Many languages use alphabets that contain more characters than a
single-byte char can represent. Such characters are typically available in the extensive
international Unicode® character set (https://unicode.org), which can represent most
of the world’s languages, mathematical symbols, emoji characters and more. C++ supports
Unicode via the types

• wchar_t,

• char16_t and char32_t (both from C++11), and

• char8_t (C++20).

The standard stream library classes are class templates that can be instantiated for these
various character types. We use the predefined stream-library instantiations for type char
in this book. Unicode-based applications would use appropriate class-template instantia-
tions based on the preceding types. C++ also supports Unicode string literals—for more
information, see

https://en.cppreference.com/w/cpp/language/string_literal

19.2.2 iostream Library Headers
The C++ stream libraries provide hundreds of I/O capabilities. Most of our C++ programs
include the <iostream> header, which declares basic services required for all stream-I/O
operations. The <iostream> header defines the cin, cout, cerr and clog objects, which
correspond to the standard input stream, the standard output stream, the unbuffered
standard error stream and the buffered standard error stream, respectively. The next sec-
tion discusses cerr, clog and buffering. The <iostream> and <iomanip> headers define
stream manipulators for formatted I/O. We’ll demonstrate many of these in this chapter.
We’ll also show that the newer C++20 text formatting with the format function greatly
simplifies formatting output.

Perf

11

20

20

pp p _ _ g y, p ,

19.4 Chapter 19 Stream I/O & C++20 Text Formatting

19.2.3 Stream Input/Output Classes and Objects
This chapter focuses on the iostream class templates:

• basic_istream for stream input operations and

• basic_ostream for stream output operations.

Though we do not use it in this chapter, basic_iostream provides stream input and
stream output operations.

For each of the class templates basic_istream, basic_ostream and basic_iostream,
the iostream library defines a type alias for char-based I/O:

• istream is a basic_istream<char> for char input—this is cin’s type.

• ostream is a basic_ostream<char> for char output—this is the type of cout,
cerr and clog.

• iostream is a basic_iostream<char> for char input and output.

We used the aliases istream and ostream in Chapter 11 when we overloaded the stream
extraction and stream insertion operators. The library also defines versions of these for
wchar_t-based I/O—named wistream, wostream and wiostream, respectively. We cover
only the char-based streams here.

Standard Stream Objects cin, cout, cerr and clog
Predefined object cin is an istream that’s connected to the standard input device—usu-
ally the keyboard. In a stream extraction operation (>>) like

int grade{0};
std::cin >> grade; // data "flows" in the direction of the arrows

the compiler selects the appropriate overloaded stream extraction operator, based on the
type of the variable grade—the one for int in this case. The >> operator is overloaded to
input fundamental-type values, strings and pointer values.

The predefined object cout is an ostream that’s connected to the standard output
device. Standard output typically appears in

• a Command Prompt or PowerShell window in Microsoft Windows,

• a Terminal in macOS or Linux, or

• a shell window in Linux.

The stream insertion operator (<<) outputs its right operand to the standard output device:

std::cout << grade; // data "flows" in the direction of the arrows

The compiler selects the appropriate stream insertion operator for grade’s type—<< is
overloaded to output data items of fundamental types, strings and pointer values.

The predefined object cerr is an ostream that’s connected to the standard error
device—typically the same device as the standard output device. Outputs to object cerr
are unbuffered, meaning that each stream insertion to cerr performs its output immedi-
ately—this is appropriate for notifying a user promptly about errors.

The predefined object clog is an ostream that’s connected to the standard error
device. Outputs to clog are buffered. Each output might be held in a buffer (that is, an
area in memory) until the buffer is filled or until the buffer is flushed. Buffering is an I/O
performance-enhancement technique.Perf

pp p _ _ g y, p ,

19.3 Stream Output 19.5

19.3 Stream Output
ostream provides both formatted and unformatted output capabilities, including

• outputting standard data types with the stream insertion operator (<<);

• outputting characters via the put member function;

• unformatted output via the write member function;

• outputting integers in decimal, octal and hexadecimal formats;

• outputting floating-point values with various precisions, with forced decimal
points, in scientific notation (e.g., 1.234567e-03) and in fixed notation (e.g.,
0.00123457);

• outputting data aligned in fields of designated widths;

• outputting data in fields padded with specified characters; and

• outputting uppercase letters in scientific notation and hexadecimal (base-16)
notation.

We’ll demonstrate all of these capabilities in this chapter.

19.3.1 Output of char* Variables
Generally, you should avoid using pointers in favor of the modern C++ techniques we’ve dis-
cussed. In programs that require pointers, occasionally, you might want to print the addresses
they contain (e.g., for debugging). The << operator outputs a char* as a null-terminated C-
style string. To output the address, cast the char* to a void* (Fig. 19.1, line 12). Operator
<<’s void* version displays the pointer in an implementation-dependent manner—often as
a hexadecimal number.1 Figure 19.1 prints a char* variable as a null-terminated C-style
string and an address. The output will vary by compiler and operating system. We say more
about controlling the bases of numbers in Section 19.6.1 and Section 19.6.8.

1. To learn more about hexadecimal numbers, see online Appendix C, Number Systems.

1 // fig19_01.cpp
2 // Printing the address stored in a char* variable.
3 #include <iostream>
4
5 int main() {
6 const char* const word{"again"};
7
8 // display the value of char* variable word, then display
9 // the value of word after a static_cast to void*

10 std::cout << "Value of word is: " << word
11 << "\nValue of static_cast<const void*>(word) is: "
12 << static_cast<const void*>(word) << '\n';
13 }

Value of word is: again
Value of static_cast<const void*>(word) is: 00007FF611416410

Fig. 19.1 | Printing the address stored in a char* variable.

pp p _ _ g y, p ,

19.6 Chapter 19 Stream I/O & C++20 Text Formatting

19.3.2 Character Output Using Member Function put
The basic_ostream member function put outputs one character at a time. For example,
the statement

std::cout.put('A');

displays a single character A. Calls to put can be chained, as in

std::cout.put('A').put('\n');

which outputs the letter A followed by a newline character. As with <<, the preceding state-
ment executes in this manner because the dot operator (.) groups left-to-right, and the put
member function returns a reference to the ostream object (cout) that received the put
call. You also can call put with a numeric expression representing a character value. For
example, the following statement outputs uppercase A:

std::cout.put(65);

19.4 Stream Input
istream provides formatted and unformatted input capabilities. The stream extraction
operator (>>) normally skips white-space characters (such as blanks, tabs and newlines) in
the input stream. Later, we’ll see how to change this behavior.

Using the Result of a Stream Extraction as a Condition
After each input, the stream extraction operator returns a reference to the stream object
that received the extraction message (e.g., cin in the expression cin >> grade). If that ref-
erence is used as a condition (e.g., in a while statement’s loop-continuation condition),
the stream’s overloaded bool cast operator function (C++11) is implicitly invoked to con-
vert the reference into true or false value, based on the success or failure, respectively, of
the last input operation. When an attempt is made to read past the end of a stream, the
stream’s overloaded bool cast operator returns false to indicate end-of-file. We used this
capability in line 24 of Fig. 4.6.

19.4.1 get and getline Member Functions
The get member function with no arguments inputs and returns one character from the
designated stream—including white-space characters and other nongraphic characters,
such as the key sequence that represents end-of-file. This version of get returns EOF when
end-of-file is encountered on the stream. EOF normally has the value –1 and is defined in
a header that’s included in your code via stream library headers like <iostream>.

Using Member Functions eof, get and put
Figure 19.2 demonstrates member functions eof and get on input stream cin and mem-
ber function put on output stream cout. This program uses get to read characters into the
int variable character, so we can test for EOF. Function get returns an int because char
can represent only nonnegative values on many platforms, and EOF is typically defined
as -1. Line 10 prints the value of cin.eof()—initially false—before any inputs to show
that end-of-file has not yet occurred on cin. You enter a line of text and press Enter fol-
lowed by the end-of-file indicator:

11

pp p _ _ g y, p ,

19.4 Stream Input 19.7

• <Ctrl> z on Microsoft Windows systems or

• <Ctrl> d on Linux and Mac systems.

Line 14 reads each character, which line 15 outputs to cout using member function put.
When end-of-file is encountered, the while statement ends, and lines 19–20 display the inte-
ger value of the last character read (-1 for end-of-file) and the current value of cin.eof(),
which now returns true, to show that end-of-file has been set on cin. Function eof returns
true only after the program attempts to read past the last character in the stream.

Other get Versions
The get member function with a character-reference argument inputs the next character
from the input stream and stores it in the character argument. This version of get returns
a reference to the istream object on which the function is invoked.

A third version of get takes three arguments—a built-in array of chars, a size limit
and a delimiter (with default value '\n'). This version can read multiple characters from
the input stream. It either reads one fewer than the specified maximum number of char-
acters and terminates or terminates as soon as the delimiter is read. A null character is
inserted to terminate the input string in the character array argument. The delimiter is not

1 // fig19_02.cpp
2 // get, put and eof member functions.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 int character{0}; // use int, because char cannot represent EOF
8
9 // prompt user to enter line of text

10 std::cout << std::format("Before input, cin.eof(): {}", std::cin.eof())
11 << "\nEnter a sentence followed by Enter and end-of-file:\n";
12
13 // use get to read each character; use put to display it
14 while ((character = std::cin.get()) != EOF) {
15 std::cout.put(character);
16 }
17
18 // display end-of-file character
19 std::cout << std::format("\nEOF on this system is: {}\n", character)
20 << std::format("After EOF input, cin.eof(): {}\n", std::cin.eof());
21 }

Before input, cin.eof(): false
Enter a sentence followed by Enter and end-of-file:
Testing the get and put member functions
Testing the get and put member functions
^Z

EOF on this system is: -1
After EOF input, cin.eof(): true

Fig. 19.2 | get, put and eof member functions.

pp p _ _ g y, p ,

19.8 Chapter 19 Stream I/O & C++20 Text Formatting

placed in the character array. Rather, it remains in the input stream and will be the next
character read if the program performs more input. Thus, the result of a second consecu-
tive get is an empty line (possibly a logic error) unless the delimiter character is removed
from the input stream—which you can do simply by calling cin.ignore().

Comparing cin and cin.get
Figure 19.3 compares input using the stream extraction operator with cin (line 14), which
reads characters until a white-space character is encountered, and input using the three-
argument version of cin.get with its third argument defaulted to the '\n' character.

Before C++20, line 14 could write past the end of buffer1—a potentially fatal logic
error. In C++20, the char array overload of operator>> is a function template that the
compiler instantiates using its char array argument’s size. In line 14, the compiler knows
that buffer1 contains 80 characters (as defined in line 9), so it instantiates an operator>>
function that limits the number of characters input to a maximum of 79, saving one array
element for the C-style string’s terminating '\0' character.

1 // fig19_03.cpp
2 // Contrasting input of a string via cin and cin.get.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 // create two char arrays, each with 80 elements
8 constexpr int size{80};
9 char buffer1[size]{};

10 char buffer2[size]{};
11
12 // use cin to input characters into buffer1
13 std::cout << "Enter a sentence:\n";
14 std::cin >> buffer1;
15
16 // display buffer1 contents
17 std::cout << std::format("\nThe cin input was:\n{}\n\n", buffer1);
18
19 // use cin.get to input characters into buffer2
20 std::cin.get(buffer2, size);
21
22 // display buffer2 contents
23 std::cout << std::format("The cin.get input was:\n{}\n", buffer2);
24 }

Enter a sentence:
Contrasting string input with cin and cin.get

The cin input was:
Contrasting

The cin.get input was:
 string input with cin and cin.get

Fig. 19.3 | Contrasting input of a string via cin and cin.get.

Err

Err
20

pp p _ _ g y, p ,

19.4 Stream Input 19.9

Using Member Function getline
Member function getline operates similarly to the third version of the get member func-
tion and inserts a null character after the line in the built-in array of chars. The getline
function removes the delimiter from the stream (i.e., reads the character and discards it)
but does not store it in the character array. The program of Fig. 19.4 uses getline to
input a line of text (line 12). Again, you should avoid using built-in arrays and pointers.
So, C++ also provides std::getline in the <string> header.2 This version of getline
reads data and places it into a string object.

19.4.2 istream Member Functions peek, putback and ignore
istream member function ignore reads and discards characters. It receives as arguments:

• a designated number of characters—the default argument value is 1—and

• a delimiter at which to stop ignoring characters—the default delimiter is EOF.

The function discards the specified number of characters, or fewer characters if the delim-
iter is encountered in the input stream.

The putback member function places the previous character obtained by a get from
an input stream back into that stream. This is helpful in applications that scan an input
stream looking for a field beginning with a specific character. When that character is input,
the application returns the character to the stream for the next input operation.

The peek member function returns the next character from an input stream but does
not remove the character from the stream.

2. “std::getline.” Accessed March 29, 2022. https://en.cppreference.com/w/cpp/string/ba-
sic_string/getline.

1 // fig19_04.cpp
2 // Inputting characters using cin member function getline.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 const int size{80};
8 char buffer[size]{}; // create array of 80 characters
9

10 // input characters in buffer via cin function getline
11 std::cout << "Enter a sentence:\n";
12 std::cin.getline(buffer, size);
13
14 // display buffer contents
15 std::cout << std::format("\nYou entered:\n{}\n", buffer);
16 }

Enter a sentence:
Using the getline member function

You entered:
Using the getline member function

Fig. 19.4 | Inputting characters using cin member function getline.

pp p _ _ g y, p ,

19.10 Chapter 19 Stream I/O & C++20 Text Formatting

19.5 Unformatted I/O Using read, write and gcount
Unformatted input/output is performed using istream’s read and ostream’s write mem-
ber functions, respectively:

• read inputs bytes to a built-in array of chars in memory.

• write outputs bytes from a built-in array of chars.

These bytes are input or output simply as “raw” bytes—they are not formatted in any way.
For example, the following call outputs the first 10 bytes of buffer, including null char-
acters, if any, that would cause output with cout and << to terminate:

char buffer[]{"HAPPY BIRTHDAY"};
std::cout.write(buffer, 10);

Similarly, the following call displays the first 10 characters of the alphabet:

std::cout.write("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 10);

The read member function inputs a designated number of characters into a built-in
array of chars. If fewer than the designated number of characters are read, failbit is set.
Section 19.7 shows how to determine whether failbit has been set. Member function
gcount reports the number of characters read by the last input operation.

Figure 19.5 demonstrates istream member functions read and gcount, and ostream
member function write. The program inputs 20 characters (from a longer input
sequence) into the array buffer with read (line 10), determines the number of characters
input with gcount (line 14) and outputs the characters in buffer with write (line 14).

1 // fig19_05.cpp
2 // Unformatted I/O using read, gcount and write.
3 #include <iostream>
4
5 int main() {
6 char buffer[80]{}; // create array of 80 characters
7
8 // use function read to input characters into buffer
9 std::cout << "Enter a sentence:\n";

10 std::cin.read(buffer, 20);
11
12 // use functions write and gcount to display buffer characters
13 std::cout << "\nThe sentence entered was:\n";
14 std::cout.write(buffer, std::cin.gcount());
15 std::cout << '\n';
16 }

Enter a sentence:
Using the read, write, and gcount member functions

The sentence entered was:
Using the read, writ

Fig. 19.5 | Unformatted I/O using read, gcount and write.

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.11

19.6 Stream Manipulators
C++ provides various stream manipulators to specify formatting in streams. The stream
manipulators provide capabilities such as

• setting the base for integer values

• setting field widths

• setting precision

• setting and unsetting format state

• setting the fill character in fields

• flushing streams

• inserting a newline into the output stream (and flushing the stream)

• inserting a null character into the output stream

• skipping white space in the input stream

The following table lists various stream manipulators that control a given stream’s format
state. We show examples of many of these stream manipulators in the next several sections.

Manipulator Description

skipws Skips white-space characters on an input stream. You can reset this setting with
stream manipulator noskipws.

left Left aligns output in a field. Padding characters appear to the right if necessary.

right Right aligns output in a field. Padding characters appear to the left if necessary.

internal In a field, this left aligns a number’s sign and right aligns a number’s value. Pad-
ding characters appear between the sign and the number if necessary.

boolalpha Displays bool values as the word true or false. Similarly, noboolalpha sets the
stream back to displaying bool values as 1 (true) and 0 (false).

dec Treats integers as decimal (base 10) values.

oct Treats integers as octal (base 8) values.

hex Treats integers as hexadecimal (base 16) values.

showbase Outputs a number’s base before the number—0 for octals and 0x or 0X for hexa-
decimals. You can reset this with stream manipulator noshowbase.

showpoint Forces floating-point numbers do display a decimal point. Normally, this is used
with fixed to guarantee a certain number of digits to the right of the decimal
point. You can reset this setting with stream manipulator noshowpoint.

uppercase Displays hexadecimal integers with uppercase letters (i.e., X and A through F) and
displays floating-point values in scientific notation with an uppercase E. You can
reset this setting with stream manipulator nouppercase.

showpos Precedes positive numbers by a plus sign (+). You can reset this with noshowpos.

scientific Outputs floating-point values in scientific notation.

fixed Outputs floating-point values in fixed-point notation with a specific number of
digits to the right of the decimal point.

pp p _ _ g y, p ,

19.12 Chapter 19 Stream I/O & C++20 Text Formatting

19.6.1 Integral Stream Base: dec, oct, hex and setbase
Integers typically are processed as decimal (base 10) values. To change this, you can insert
the hex stream manipulator to set the base to hexadecimal (base 16) or insert the oct
manipulator to set the base to octal (base 8). Insert the dec manipulator to reset the stream
base to decimal. These stream manipulators are all sticky—that is, the settings remain in
effect until you change them.

You also can set a stream’s integer base via the setbase parameterized stream manip-
ulator (header <iomanip>). A parameterized stream manipulator takes an argument—in
this case, the value 10, 8, or 16 to set the base to decimal, octal or hexadecimal.3 The stream
base value remains the same until changed explicitly, so setbase settings are sticky.
Figure 19.6 demonstrates stream manipulators hex (line 14), dec (line 17), oct (line 18)
and setbase (line 21).

19.6.2 Floating-Point Precision (setprecision, precision)
You can control the precision of floating-point numbers—that is, the number of digits to
the right of the decimal point—with the setprecision stream manipulator or the ost-
ream member function precision. Both are sticky—a call to either sets the precision for

3. Appendix C, Number Systems, discusses the decimal, octal and hexadecimal number systems.

1 // fig19_06.cpp
2 // Using stream manipulators dec, oct, hex and setbase.
3 #include <iomanip>
4 #include <iostream>
5
6 int main() {
7 int number{0};
8
9 std::cout << "Enter a decimal number: ";

10 std::cin >> number; // input number
11
12 // use hex stream manipulator to show hexadecimal number
13 std::cout << number << " in hexadecimal is: "
14 << std::hex << number << "\n";
15
16 // use oct stream manipulator to show octal number
17 std::cout << std::dec << number << " in octal is: "
18 << std::oct << number << "\n";
19
20 // use setbase stream manipulator to show decimal number
21 std::cout << std::setbase(10) << number << " in decimal is: "
22 << number << "\n";
23 }

Enter a decimal number: 20
20 in hexadecimal is: 14
20 in octal is: 24
20 in decimal is: 20

Fig. 19.6 | Using stream manipulators dec, oct, hex and setbase.

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.13

all subsequent output operations until the next precision-setting call. Calling member
function precision with no argument returns the current precision setting. You can use
this to save the current precision setting so you can restore it later. Figure 19.7 uses both
member function precision (line 16) and the setprecision manipulator (line 24) to
print a table that shows the square root of 2, with precision varying from 0 to 9. Stream
manipulator fixed (line 12) forces a floating-point number to display in fixed-point nota-
tion with a specific number of digits to the right of the decimal point, as specified by mem-
ber function precision or stream manipulator setprecision.

1 // fig19_07.cpp
2 // Controlling precision of floating-point values.
3 #include <iomanip>
4 #include <iostream>
5 #include <cmath>
6
7 int main() {
8 double root2{std::sqrt(2.0)}; // calculate square root of 2
9

10 std::cout << "Square root of 2 with precisions 0-9.\n"
11 << "Precision set by ostream member function precision:\n";
12 std::cout << std::fixed; // use fixed-point notation
13
14 // display square root using ostream function precision
15 for (int places{0}; places <= 9; ++places) {
16 std::cout.precision(places);
17 std::cout << root2 << "\n";
18 }
19
20 std::cout << "\nPrecision set by stream manipulator setprecision:\n";
21
22 // set precision for each digit, then display square root
23 for (int places{0}; places <= 9; ++places) {
24 std::cout << std::setprecision(places) << root2 << "\n";
25 }
26 }

Square root of 2 with precisions 0-9.
Precision set by ostream member function precision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

Fig. 19.7 | Controlling precision of floating-point values. (Part 1 of 2.)

pp p _ _ g y, p ,

19.14 Chapter 19 Stream I/O & C++20 Text Formatting

19.6.3 Field Width (width, setw)
The width member function (of classes istream and ostream) sets the field width—that
is, the number of character positions in which a value should be output or the maximum
number of characters that should be input. The function also returns the previous field
width so you can save it and restore the value later. If the values output are narrower than
the field width, fill characters are inserted as padding. When a field is not sufficiently wide
to handle outputs, the outputs print as wide as necessary, which can yield confusing out-
puts. The width setting is not sticky—it applies only for the next insertion or extraction.
Afterward, the width is set implicitly to 0, so subsequent inputs or outputs will be per-
formed with default settings. Calling width with no argument returns the current setting.

Figure 19.8 demonstrates the width member function for both input (lines 10 and
16) and output (line 14). For input into a char array, a maximum of one fewer characters
than the width are read, saving one element for the null character to be placed at the end
of the C-style string. Remember that stream extraction terminates when nonleading white
space is encountered. When prompted for input in Fig. 19.8, enter a line of text and press
Enter followed by end-of-file (<Ctrl> z on Microsoft Windows systems and <Ctrl> d on
Linux and OS X systems). The setw parameterized stream manipulator also may be used
to set the field width by inserting a call to it in a cin or cout statement.

Precision set by stream manipulator setprecision:
1
1.4
1.41
1.414
1.4142
1.41421
1.414214
1.4142136
1.41421356
1.414213562

1 // fig19_08.cpp
2 // width member function of classes istream and ostream.
3 #include <iostream>
4
5 int main() {
6 int widthValue{4};
7 char sentence[10]{};
8
9 std::cout << "Enter a sentence:\n";

10 std::cin.width(5); // input up to 4 characters from sentence
11

Fig. 19.8 | width member function of class classes istream and ostream. (Part 1 of 2.)

Fig. 19.7 | Controlling precision of floating-point values. (Part 2 of 2.)

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.15

19.6.4 User-Defined Output Stream Manipulators
You can create your own stream manipulators. Figure 19.9 shows how to create and use
custom nonparameterized output-stream manipulators bell (lines 7–9) and tab (lines
12–14). These are defined as functions with ostream& as the return type and parameter
type. When lines 19 and 21 insert tab and bell in the output stream, their corresponding
functions are called, which in turn output the \a (alert) and \t (tab) escape sequences,
respectively. The bell manipulator does not display any text. Rather, it plays your sys-
tem’s alert sound.

12 // set field width, then display characters based on that width
13 while (std::cin >> sentence) {
14 std::cout.width(widthValue++);
15 std::cout << sentence << "\n";
16 std::cin.width(5); // input up to 4 more characters from sentence
17 }
18 }

Enter a sentence:
This is a test of the width member function
This
 is
 a
 test
 of
 the
 widt
 h
 memb
 er
 func
 tion
^Z

1 // fig19_09.cpp
2 // Creating and testing user-defined, nonparameterized
3 // stream manipulators.
4 #include <iostream>
5
6 // bell manipulator (using escape sequence \a)
7 std::ostream& bell(std::ostream& output) {
8 return output << '\a'; // issue system beep
9 }

10
11 // tab manipulator (using escape sequence \t)
12 std::ostream& tab(std::ostream& output) {
13 return output << '\t'; // issue tab
14 }
15

Fig. 19.9 | Creating and testing user-defined, nonparameterized stream manipulators. (Part 1 of 2.)

Fig. 19.8 | width member function of class classes istream and ostream. (Part 2 of 2.)

pp p _ _ g y, p ,

19.16 Chapter 19 Stream I/O & C++20 Text Formatting

19.6.5 Trailing Zeros and Decimal Points (showpoint)
Stream manipulator showpoint (Fig. 19.10) is a sticky setting that forces a floating-point
number to display a decimal point and trailing zeros. For example, the floating-point value
79.0 prints as 79 without using showpoint and prints as 79.00000 using showpoint. The
number of trailing zeros is determined by the current precision. To reset the showpoint
setting, output the stream manipulator noshowpoint. The default precision of floating-
point numbers is 6, which you can see in the output produced by lines 13–17. When nei-
ther the fixed nor the scientific stream manipulator is used, the precision represents
the number of significant digits to display (i.e., the total number of digits to display), not
the number of digits to display after the decimal point.

16 int main() {
17 // use tab and bell manipulators
18 std::cout << "Testing the tab manipulator:\n"
19 << 'a' << tab << 'b' << tab << 'c' << '\n';
20
21 std::cout << "Testing the bell manipulator\n" << bell;
22 }

Testing the tab manipulator:
a b c
Testing the bell manipulator

1 // fig19_10.cpp
2 // Displaying trailing zeros and decimal points in floating-point values.
3 #include <iostream>
4
5 int main() {
6 // display double values with default stream format
7 std::cout << "Before using showpoint"
8 << "\n9.9900 prints as: " << 9.9900
9 << "\n9.9000 prints as: " << 9.9000

10 << "\n9.0000 prints as: " << 9.0000;
11
12 // display double value after showpoint
13 std::cout << std::showpoint
14 << "\n\nAfter using showpoint"
15 << "\n9.9900 prints as: " << 9.9900
16 << "\n9.9000 prints as: " << 9.9000
17 << "\n9.0000 prints as: " << 9.0000 << '\n';
18 }

Before using showpoint
9.9900 prints as: 9.99
9.9000 prints as: 9.9
9.0000 prints as: 9

Fig. 19.10 | Controlling the printing of trailing zeros and decimal points in floating-point values.
(Part 1 of 2.)

Fig. 19.9 | Creating and testing user-defined, nonparameterized stream manipulators. (Part 2 of 2.)

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.17

19.6.6 Alignment (left, right and internal)
Stream manipulators left and right enable fields to be left-aligned with padding char-
acters to the right or right-aligned with padding characters to the left, respectively. The
padding character is specified by the fill member function or the setfill parameterized
stream manipulator (which we discuss in Section 19.6.7). Figure 19.11 uses the setw,
left and right manipulators to left align and right align integer data in a field—we wrap
each field in quotes so you can see the leading and trailing space in the field.

Stream manipulator internal (Fig. 19.12; line 8) indicates that a number’s sign
should be left-aligned within a field, the number’s magnitude should be right-aligned and

After using showpoint
9.9900 prints as: 9.99000
9.9000 prints as: 9.90000
9.0000 prints as: 9.00000

1 // fig19_11.cpp
2 // Left and right alignment with stream manipulators left and right.
3 #include <iomanip>
4 #include <iostream>
5
6 int main() {
7 int x{12345};
8
9 // display x right aligned (default)

10 std::cout << "Default is right aligned:\n\""
11 << std::setw(10) << x << "\"";
12
13 // use left manipulator to display x left aligned
14 std::cout << "\n\nUse left to left align x:\n\""
15 << std::left << std::setw(10) << x << "\"";
16
17 // use right manipulator to display x right aligned
18 std::cout << "\n\nUse right to right align x:\n\""
19 << std::right << std::setw(10) << x << "\"\n";
20 }

Default is right aligned:
" 12345"

Use left to left align x:
"12345 "

Use right to right align x:
" 12345"

Fig. 19.11 | Left and right alignment with stream manipulators left and right.

Fig. 19.10 | Controlling the printing of trailing zeros and decimal points in floating-point values.
(Part 2 of 2.)

pp p _ _ g y, p ,

19.18 Chapter 19 Stream I/O & C++20 Text Formatting

intervening spaces should be padded with the fill character. When using stream manipu-
lator showbase, the base is left aligned. The showpos manipulator (line 8) forces the plus
sign to print. To reset the showpos setting, output the stream manipulator noshowpos.

19.6.7 Padding (fill, setfill)
The fill member function specifies the fill character to use with aligned fields and
returns the previous fill character. Spaces are used for padding by default. The setfill
manipulator also sets the padding character. Figure 19.13 demonstrates fill (line 29)
and setfill (lines 33 and 38) to set the fill character.

1 // fig19_12.cpp
2 // Printing an integer with internal spacing and plus sign.
3 #include <iomanip>
4 #include <iostream>
5
6 int main() {
7 // display value with internal spacing and plus sign
8 std::cout << std::internal << std::showpos
9 << std::setw(10) << 123 << "\n";

10 }

+ 123

Fig. 19.12 | Printing an integer with internal spacing and plus sign.

1 // fig19_13.cpp
2 // Using member function fill and stream manipulator setfill to change
3 // the padding character for fields larger than the printed value.
4 #include <iomanip>
5 #include <iostream>
6
7 int main() {
8 int x{10000};
9

10 // display x
11 std::cout << x << " printed as int right and left aligned\n"
12 << "and as hex with internal alignment.\n"
13 << "Using the default pad character (space):\n";
14
15 // display x
16 std::cout << std::setw(10) << x << "\n";
17
18 // display x with left alignment
19 std::cout << std::left << std::setw(10) << x << "\n";
20

Fig. 19.13 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the printed values. (Part 1 of 2.)

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.19

19.6.8 Integral Stream Base (dec, oct, hex, showbase)
C++ provides stream manipulators dec, oct and hex to specify that integers should display
as decimal, hexadecimal and octal values, respectively. Integers display in decimal (base
10) by default. With stream extraction, integers prefixed with 0 are treated as octal values,
integers prefixed with 0x or 0X are treated as hexadecimal values, and all other integers are
treated as decimal values. Once you specify a stream’s base, it processes all integers using
that base until you specify a different one or until the program terminates.

Stream manipulator showbase causes octal numbers to be output with a leading 0 and
hexadecimal numbers with either a leading 0x or a leading 0X—Section 19.6.10 shows
that stream manipulator uppercase determines which option is chosen for hexadecimal
values. Figure 19.14 demonstrates showbase. To reset the showbase setting, insert the
stream manipulator noshowbase in the stream.

21 // display x with base as hex with internal alignment
22 std::cout << std::showbase << std::internal << std::setw(10)
23 << std::hex << x << "\n\n";
24
25 std::cout << "Using various padding characters:\n";
26
27 // display x using padded characters (right alignment)
28 std::cout << std::right;
29 std::cout.fill('*');
30 std::cout << std::setw(10) << std::dec << x << "\n";
31
32 // display x using padded characters (left alignment)
33 std::cout << std::left << std::setw(10) << std::setfill('%')
34 << x << "\n";
35
36 // display x using padded characters (internal alignment)
37 std::cout << std::internal << std::setw(10)
38 << std::setfill('^') << std::hex << x << "\n";
39 }

10000 printed as int right and left aligned
and as hex with internal alignment.
Using the default pad character (space):
 10000
10000
0x 2710

Using various padding characters:
*****10000
10000%%%%%
0x^^^^2710

Fig. 19.13 | Using member function fill and stream manipulator setfill to change the
padding character for fields larger than the printed values. (Part 2 of 2.)

pp p _ _ g y, p ,

19.20 Chapter 19 Stream I/O & C++20 Text Formatting

19.6.9 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed)
When you display a floating-point number without specifying its format, its value deter-
mines the output format. Some numbers display in scientific notation and others in fixed-
point notation. The sticky stream manipulators scientific and fixed control the output
format of floating-point numbers:

• scientific forces a floating-point number to display in scientific format.

• fixed forces a floating-point number to display in fixed-point notation with a
specific number of digits to the right of the decimal point, as specified by member
function precision or stream manipulator setprecision.

Figure 19.15 displays floating-point numbers in fixed and scientific formats using stream
manipulators scientific (line 15) and fixed (line 19). The exponent format in scientific
notation might vary among compilers.

1 // fig19_14.cpp
2 // Stream manipulator showbase.
3 #include <iostream>
4
5 int main() {
6 int x{100};
7
8 // use showbase to show number base
9 std::cout << "Printing octal and hexadecimal values with showbase:\n"

10 << std::showbase;
11
12 std::cout << x << "\n"; // print decimal value
13 std::cout << std::oct << x << "\n"; // print octal value
14 std::cout << std::hex << x << "\n"; // print hexadecimal value
15 }

Printing octal and hexadecimal values with showbase:
100
0144
0x64

Fig. 19.14 | Stream manipulator showbase.

1 // fig19_15.cpp
2 // Floating-point values displayed in system default,
3 // scientific and fixed formats.
4 #include <iostream>
5
6 int main() {
7 double x{0.001234567};
8 double y{1.946e9};
9

Fig. 19.15 | Floating-point values displayed in system default, scientific and fixed formats. (Part
1 of 2.)

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.21

19.6.10 Uppercase/Lowercase Control (uppercase)
Stream manipulator uppercase outputs an uppercase X with hexadecimal-integer values or
an uppercase E with scientific-notation floating-point values (Fig. 19.16; line 11). Using
uppercase also displays the hexadecimal digits A–F in uppercase. These appear in lower-
case by default. To reset the uppercase setting, output nouppercase.

10 // display x and y in default format
11 std::cout << "Displayed in default format:\n" << x << '\t' << y;
12
13 // display x and y in scientific format
14 std::cout << "\n\nDisplayed in scientific format:\n"
15 << std::scientific << x << '\t' << y;
16
17 // display x and y in fixed format
18 std::cout << "\n\nDisplayed in fixed format:\n"
19 << std::fixed << x << '\t' << y << "\n";
20 }

Displayed in default format:
0.00123457 1.946e+09

Displayed in scientific format:
1.234567e-03 1.946000e+09

Displayed in fixed format:
0.001235 1946000000.000000

1 // fig19_16.cpp
2 // Stream manipulator uppercase.
3 #include <iostream>
4
5 int main() {
6 std::cout << "Printing uppercase letters in scientific\n"
7 << "notation exponents and hexadecimal values:\n";
8
9 // use std::uppercase to display uppercase letters; use std::hex and

10 // std::showbase to display hexadecimal value and its base
11 std::cout << std::uppercase << 4.345e10 << "\n"
12 << std::hex << std::showbase << 123456789 << "\n";
13 }

Printing uppercase letters in scientific
notation exponents and hexadecimal values:
4.345E+10
0X75BCD15

Fig. 19.16 | Stream manipulator uppercase.

Fig. 19.15 | Floating-point values displayed in system default, scientific and fixed formats. (Part
2 of 2.)

pp p _ _ g y, p ,

19.22 Chapter 19 Stream I/O & C++20 Text Formatting

19.6.11 Specifying Boolean Format (boolalpha)
C++ bool values may be false or true. Recall that 0 also indicates false, and any nonzero
value indicates true. A bool value displays as 0 or 1 by default. You can use stream manip-
ulator boolalpha to set the output stream to display bool values as the strings "true" and
"false" and stream manipulator noboolalpha to set the output stream back to displaying
bool values as the integers 0 and 1. Figure 19.17 demonstrates these stream manipulators.
Line 9 displays booleanValue (which line 6 sets to true) as an integer. Line 13 uses boo-
lalpha to display the bool value as a string. Lines 16–17 then change the booleanValue
to false and use manipulator noboolalpha, so line 20 can display the bool value as an
integer. Line 24 uses manipulator boolalpha to display the bool value as a string. Both
boolalpha and noboolalpha are sticky settings.

1 // fig19_17.cpp
2 // Stream manipulators boolalpha and noboolalpha.
3 #include <iostream>
4
5 int main() {
6 bool booleanValue{true};
7
8 // display default true booleanValue
9 std::cout << "booleanValue is " << booleanValue;

10
11 // display booleanValue after using boolalpha
12 std::cout << "\nbooleanValue (after using boolalpha) is "
13 << std::boolalpha << booleanValue;
14
15 std::cout << "\n\nswitch booleanValue and use noboolalpha\n";
16 booleanValue = false; // change booleanValue
17 std::cout << std::noboolalpha; // use noboolalpha
18
19 // display default false booleanValue after using noboolalpha
20 std::cout << "\nbooleanValue is " << booleanValue;
21
22 // display booleanValue after using boolalpha again
23 std::cout << "\nbooleanValue (after using boolalpha) is "
24 << std::boolalpha << booleanValue << "\n";
25 }

booleanValue is 1
booleanValue (after using boolalpha) is true

switch booleanValue and use noboolalpha

booleanValue is 0
booleanValue (after using boolalpha) is false

Fig. 19.17 | Stream manipulators boolalpha and noboolalpha.

pp p _ _ g y, p ,

19.6 Stream Manipulators 19.23

19.6.12 Setting and Resetting the Format State via Member Function
flags
Throughout Section 19.7, we’ve used stream manipulators to change output format char-
acteristics. How do you return an output stream’s format to its previous state after chang-
ing its format? Member function flags without an argument returns the current format
state settings as an fmtflags object. Member function flags with an fmtflags argument
sets the format state as specified by the argument and returns the prior state settings. The
initial settings of the value that flags returns might vary among compilers. Figure 19.18
uses member function flags to save the stream’s original format state (line 16), then
restore the original format settings (line 24). The capabilities for capturing the format state
and restoring it are not required in C++20 text formatting. Each std::format call’s for-
matting is used only in that call and does not affect any other std::format call, thus sim-
plifying output formatting.

1 // fig19_18.cpp
2 // flags member function.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 int integerValue{1000};
8 double doubleValue{0.0947628};
9

10 // display flags value, int and double values (original format)
11 std::cout << std::format("flags value: {}\n", std::cout.flags())
12 << "int and double in original format:\n"
13 << integerValue << '\t' << doubleValue << "\n\n";
14
15 // save original format, then change the format
16 auto originalFormat{std::cout.flags()};
17 std::cout << std::showbase << std::oct << std::scientific;
18
19 // display flags value, int and double values (new format)
20 std::cout << std::format("flags value: {}\n", std::cout.flags())
21 << "int and double in new format:\n"
22 << integerValue << '\t' << doubleValue << "\n\n";
23
24 std::cout.flags(originalFormat); // restore format
25
26 // display flags value, int and double values (original format)
27 std::cout << std::format("flags value: {}\n", std::cout.flags())
28 << "int and double in original format:\n"
29 << integerValue << '\t' << doubleValue << "\n";
30 }

Fig. 19.18 | flags member function. (Part 1 of 2.)

20

pp p _ _ g y, p ,

19.24 Chapter 19 Stream I/O & C++20 Text Formatting

19.7 Stream Error States
Each stream object contains a set of state bits representing the stream’s state—sticky for-
mat settings, error indicators, etc. You can use this information to test, for example,
whether an input was successful. These state bits are defined in class ios_base—the base
class of the stream classes. Stream extraction sets the stream’s failbit to true if the wrong
type of data is input. Similarly, stream extraction sets the stream’s badbit to true if the
operation fails in an unrecoverable manner—for example, if a disk fails when a program is
reading a file from that disk. Figure 19.19 shows how to use bits like failbit and badbit
to determine a stream’s state.4 Online Appendix E discusses bits and bit manipulation in
detail.

flags value: 513
int and double in original format:
1000 0.0947628

flags value: 5129
int and double in new format:
01750 9.476280e-02

flags value: 513
int and double in original format:
1000 0.0947628

4. The actual values output by this program may vary among compilers.

1 // fig19_19.cpp
2 // Testing error states.
3 #include <iostream>
4
5 int main() {
6 int integerValue{0};
7
8 // display results of cin functions
9 std::cout << std::boolalpha << "Before a bad input operation:"

10 << "\ncin.rdstate(): " << std::cin.rdstate()
11 << "\n cin.eof(): " << std::cin.eof()
12 << "\n cin.fail(): " << std::cin.fail()
13 << "\n cin.bad(): " << std::cin.bad()
14 << "\n cin.good(): " << std::cin.good()
15 << "\n\nExpects an integer, but enter a character: ";
16
17 std::cin >> integerValue; // enter character value
18

Fig. 19.19 | Testing error states. (Part 1 of 2.)

Fig. 19.18 | flags member function. (Part 2 of 2.)

pp p _ _ g y, p ,

19.7 Stream Error States 19.25

Member Function eof
The program begins by displaying the stream’s state before receiving any input from the
user (lines 9–14). Line 11 uses member function eof to determine whether end-of-file has
been encountered on the stream. In this case, the function returns 0 (false). The function
checks the value of the stream’s eofbit data member, which is set to true for an input
stream after end-of-file is encountered after an attempt to extract data beyond the end of
the stream.

Member Function fail
Line 12 uses the fail member function to determine whether a stream operation has
failed. The function checks the value of the stream’s failbit data member, which is set
to true on a stream when a format error occurs and as a result no characters are input. For
example, this might occur when you attempt to read a number but the user enters a string.
In this case, the function returns 0 (false). When such an error occurs on input, the char-
acters are not lost. Usually, recovering from such input errors is possible.

19 // display results of cin functions after bad input
20 std::cout << "\nAfter a bad input operation:"
21 << "\ncin.rdstate(): " << std::cin.rdstate()
22 << "\n cin.eof(): " << std::cin.eof()
23 << "\n cin.fail(): " << std::cin.fail()
24 << "\n cin.bad(): " << std::cin.bad()
25 << "\n cin.good(): " << std::cin.good();
26
27 std::cin.clear(); // clear stream
28
29 // display results of cin functions after clearing cin
30 std::cout << "\n\nAfter cin.clear()"
31 << "\ncin.fail(): " << std::cin.fail()
32 << "\ncin.good(): " << std::cin.good() << "\n";
33 }

Before a bad input operation:
cin.rdstate(): 0
 cin.eof(): false
 cin.fail(): false
 cin.bad(): false
 cin.good(): true

Expects an integer, but enter a character: A

After a bad input operation:
cin.rdstate(): 2
 cin.eof(): false
 cin.fail(): true
 cin.bad(): false
 cin.good(): false

After cin.clear()
cin.fail(): false
cin.good(): true

Fig. 19.19 | Testing error states. (Part 2 of 2.)

pp p _ _ g y, p ,

19.26 Chapter 19 Stream I/O & C++20 Text Formatting

Member Function bad
Line 13 uses the bad member function to determine whether a stream operation failed.
The function checks the value of the stream’s badbit data member, which is set to true
for a stream when an error occurs that results in the loss of data—such as reading from a
file when the disk on which the file is stored fails. In this case, the function returns 0
(false). Generally, such serious failures are nonrecoverable.

Member Function good
Line 14 uses the good member function, which returns true if the bad, fail and eof func-
tions would all return false. The function checks the stream’s goodbit, which is set to
true for a stream if none of the bits eofbit, failbit or badbit is set to true for the
stream. In this case, the function returns 1 (true). I/O operations should be performed
only on “good” streams.

Member Function rdstate
The rdstate member function (line 10) returns the stream’s overall error state as an inte-
ger value. The function’s return value could be tested, for example, by a switch statement
that examines eofbit, badbit, failbit and goodbit. The preferred means of testing the
state of a stream is to use member functions eof, bad, fail and good—using these func-
tions does not require you to be familiar with particular status bits.

Causing an Error in the Input Stream and Redisplaying the Stream’s State
Line 17 reads a value into an int variable. Enter a string rather than an int to force an
error to occur in the input stream. At this point, the input fails and lines 20–25 once again
call the streams’s state functions. In this case, fail returns 1 (true) because the input
failed. Function rdstate also returns a nonzero value (true) because at least one of the
member functions eof, bad and fail returned true. Once an error occurs in the stream,
function good returns 0 (false).

Clearing the Error State, So You May Continue Using the Stream
After an error occurs, you can no longer use the stream until you reset its error state. The
clear member function (line 27) is used to restore a stream’s state to “good” so that I/O
may proceed on that stream. Lines 30–32 show that fail returns 0 (false) and good
returns 1 (true), so the input stream can be used again.

The default argument for clear is goodbit, so the statement

std::cin.clear();

clears cin and sets goodbit for the stream. The statement

std::cin.clear(ios::failbit)

sets the failbit. You might want to do this when performing input on cin with a user-
defined type and encountering a problem. The name clear might seem inappropriate in
this context, but it’s correct.

Overloaded Operators ! and bool
Overloaded operators can be used to test a stream’s state in conditions. The operator!
member function—inherited into the stream classes from class basic_ios—returns true
if the badbit, the failbit or both are true. The operator bool member function (added

pp p _ _ g y, p ,

19.8 Tying an Output Stream to an Input Stream 19.27

in C++11) returns false if the badbit is true, the failbit is true or both are true. These
functions are useful in I/O processing when a true/false condition is being tested under
the control of a selection statement or iteration statement. For example, you could use an
if statement of the form

if (!std::cin) {
 // process invalid input stream
}

to execute code if cin’s stream is invalid due to a failed input. Similarly, you’ve already
seen a while condition of the form

while (std::cin >> variableName) {
 // process valid input
}

which enables the loop to execute as long as each input operation is successful and termi-
nates the loop if an input fails or the end-of-file indicator is encountered.

19.8 Tying an Output Stream to an Input Stream
Interactive command-line applications generally use an istream for input and an ostream
for output. When a prompting message appears on the screen, the user responds by enter-
ing the appropriate data. Obviously, the prompt needs to appear before the input opera-
tion proceeds. With output buffering, outputs appear only

• when the buffer fills

• when outputs are flushed explicitly by the program or

• automatically at the end of the program.

C++ provides member function tie to synchronize (i.e., “tie together”) an istream and
an ostream to ensure that outputs happen (that is, they are flushed) before subsequent
inputs. The call

std::cin.tie(&cout);

ties cout (an ostream) to cin (an istream). This particular call is redundant because C++
performs this operation automatically for the standard output and input streams. How-
ever, you might use this with other input/output stream pairs. To untie an input stream,
inputStream, from an output stream, use the call

inputStream.tie(0);

19.9 C++20 Text Formatting
As we mentioned in Chapter 3, C++20 provides powerful string-formatting capabilities
via the format function (in header <format>). These capabilities greatly simplify format-
ting by using a concise syntax that’s based on the Python programming language’s text for-
matting. As you’ve seen in this chapter, pre-C++20 output formatting is quite verbose.
C++20 text-formatting capabilities are more concise and more powerful.

We presented several new C++20 text-formatting features throughout the book using
the open-source {fmt} library’s fmt::format function because our preferred compilers did
not yet support the C++20 <format> header and std::format function. As we wrote this

11

20

20

pp p _ _ g y, p ,

19.28 Chapter 19 Stream I/O & C++20 Text Formatting

online chapter, Microsoft Visual C++ added support for these, so we used the <format>
header and std::format function for this section.

19.9.1 C++20 std::format Presentation Types
When you specify a placeholder for a value in a format string, the std::format function
assumes the value should be displayed as a string unless you specify another type. In some
cases, the type is required—for example, if you want to specify precision for a floating-
point number or change the base in which to display an integer. In these cases, you can
specify the presentation type in each placeholder. Figure 19.20 shows the various presen-
tation types.

1 // fig19_20.cpp
2 // C++20 text-formatting presentation types.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 // floating-point presentation types
8 std::cout << "Display 17.489 with default, .1 and .2 precisions:\n"
9 << std::format("f: {0:f}\n.1f: {0:.1f}\n.2f: {0:.2f}\n\n", 17.489);

10
11 std::cout << "Display 10000000000000000.0 with f, e, g and a\n"
12 << std::format("f: {0:f}\ne: {0:e}\ng: {0:g}\na: {0:a}\n\n",
13 10000000000000000.0);
14
15 // integer presentation types; # displays a base prefix
16 std::cout << "Display 100 with d, #b, #o and #x:\n"
17 << std::format(
18 "d: {0:d}\n#b: {0:#b}\n#o: {0:#o}\n#x: {0:#x}\n\n", 100);
19
20 // character presentation type
21 std::cout << "Display 65 and 97 with c:\n"
22 << std::format("{:c} {:c}\n\n", 65, 97);
23
24 // string presentation type
25 std::cout << "Display \"hello\" with s:\n"
26 << std::format("{:s}\n", "hello");
27 }

Display 17.489 with default, .1 and .2 precisions:
f: 17.489000
.1f: 17.5
.2f: 17.49

Display 10000000000000000.0 with f, e, g and a
f: 10000000000000000.000000
e: 1.000000e+16
g: 1e+16
a: 1.1c37937e08p+53

Fig. 19.20 | C++20 text-formatting presentation types. (Part 1 of 2.)

20

pp p _ _ g y, p ,

19.9 C++20 Text Formatting 19.29

Floating-Point Values and C++20 Presentation Type f
You’ve used the presentation type f to format floating-point values. Formatting is type-
dependent, so this presentation type is required to specify a floating-point number’s pre-
cision. Line 9 uses the f presentation type to format the double value 17.489 in the default
precision (6) and rounded to the tenths and hundredths positions. Function std::format
uses presentation types to determine whether the other formatting options are allowed for
a given type. For all the presentation types, their formatting options and the order in
which the options must be specified, see

https://en.cppreference.com/w/cpp/utility/format/formatter

Indexing Arguments By Position
In line 9, note the 0 to the left of each format specifier’s colon (:). You can reference the
arguments after the format string positionally by their index numbers starting from index
0. This allows you to

• reference the same argument multiple times, as we did three times in line 9, or

• reference the arguments in any order, which can be helpful when localizing
applications for spoken languages that order words differently in sentences.

Floating-Point Values and C++20 Presentation Types e, g and a
You also can format floating-point values using the following presentation types, as shown
in lines 12–13:

• e or E—These use exponential (scientific) notation to format floating-point val-
ues. The exponent is preceded by an e or E in the formatted string. The value
1.000000e+16 in this program’s output is equivalent to

 1.000000 x 1016

• g or G—These choose between fixed-point notation and exponential notation
based on the value’s magnitude. For exponential notation, g displays a lowercase
e, and G displays an uppercase E.

• a or A—These format floating-point values in hexadecimal notation with lower-
case letters (a) or uppercase letters (A), respectively.

Display 100 with d, #b, #o and #x:
d: 100
#b: 0b1100100
#o: 0144
#x: 0x64

Display 65 and 97 with c:
A a

Display "hello" with s:
hello

Fig. 19.20 | C++20 text-formatting presentation types. (Part 2 of 2.)

20

20

pp p _ _ g y, p ,

19.30 Chapter 19 Stream I/O & C++20 Text Formatting

C++20 Integer Presentation Types
Lines 17–18 display the int value 100 using various integer number systems:5

• d—Displays an integer in decimal (base 10) format.

• b or B—These display an integer in binary (base 2) format with a lowercase b or
uppercase B when a binary value is displayed with its base (Section 19.9.3).

• o presentation type—Displays an integer in octal (base 8) format.

• x or X presentation type—These display an integer in hexadecimal (base 16) for-
mat with a lowercase or uppercase letters, respectively.

C++20 Character Presentation Type
The c presentation type formats an integer character code as the corresponding character,
as shown in line 22.

C++20 String Presentation Type
When a placeholder does not specify a presentation type, the default is to format the cor-
responding value as a string. The s presentation type indicates that the corresponding
value must specifically be a string, an expression that produces a string or a string literal,
as in line 26.

C++20 Locale-Specific Numeric and bool Formatting
If your application requires locale-specific formatting of numeric or bool values, precede
the integer or floating-point presentation type with L.

19.9.2 C++20 std::format Field Widths and Alignment
Previously you used field widths to format text in a specified number of character posi-
tions. Figure 19.21 demonstrates field widths, default alignments and explicit alignments.
We enclose each formatted value in brackets ([]) so you can better see the formatting
results. By default, std::format right-aligns numbers and left-aligns strings, as demon-
strated by line 8. For values with fewer characters than the field width, the remaining char-
acter positions are filled with spaces.6 Values with more characters than the specified field
width use as many character positions as they need.

5. See the online Appendix C, Number Systems for information about the binary, octal and hexadeci-
mal number systems.

6. C++20 allows you to specify any fill character (other than { and }, which delimit placeholders) im-
mediately to the right of the format specifier’s colon (:).

1 // fig19_21.cpp
2 // C++20 text-formatting with field widths and alignment.
3 #include <format>
4 #include <iostream>
5
6 int main() {

Fig. 19.21 | C++20 text-formatting with field widths and alignment. (Part 1 of 2.)

20

20

20

20

20

20

pp p _ _ g y, p ,

19.9 C++20 Text Formatting 19.31

Recall that you can specify left-alignment and right-alignment with < and >. Lines
11–12 left-align the numeric values 27 and 3.5 and right-align the string "hello" in fields
of 15 characters

The I/O streams output formatting shown earlier in this chapter does not support
center-aligning text, but std::format can do this conveniently with ^, as shown in line
15. Centering attempts to spread the unoccupied character positions equally to the left and
right of the formatted value. std::format places the extra space to the right if an odd
number of character positions remain, as you can see for the value 27, which has two spaces
to its left and three to its right.

19.9.3 C++20 std::format Numeric Formatting
Figure 19.22 demonstrates various C++20 numeric formatting capabilities. By default,
negative numeric values display with a – sign. Sometimes it’s desirable to force a + sign to
display for a positive number. A + in the format specifier (line 8) indicates that the numeric
value should always be preceded by a sign (+ or -). To fill the field’s remaining characters
with 0s rather than spaces, place 0 before the field width and after the + if there is one, as
in line 8’s second format specifier. A space in the format specifier (as in line 11’s second
and third format specifiers) indicates that positive numbers should show a space character
in the sign position. This is useful for aligning positive and negative values for display pur-
poses. Note that the two values with a space in their format specifiers align. If a field width
is specified, place the space before the field width. To precede a binary, octal or hexadeci-
mal number with its base, use # in the format specifier as in line 14.

7 std::cout << "Default alignment with field width 10:\n"
8 << std::format("[{:10d}]\n[{:10f}]\n[{:10}]\n\n", 27, 3.5, "hello");
9

10 std::cout << "Specifying left or right alignment in a field:\n"
11 << std::format("[{:<15d}]\n[{:<15f}]\n[{:>15}]\n\n",
12 27, 3.5, "hello");
13
14 std::cout << "Centering text in a field:\n"
15 << std::format("[{:^7d}]\n[{:^7.1f}]\n[{:^7}]\n", 27, 3.5, "hello");
16 }

Default alignment with field width 10:
[27]
[3.500000]
[hello]

Specifying left or right alignment in a field:
[27]
[3.500000]
[hello]

Centering text in a field:
[27]
[3.5]
[hello]

Fig. 19.21 | C++20 text-formatting with field widths and alignment. (Part 2 of 2.)

20

pp p _ _ g y, p ,

19.32 Chapter 19 Stream I/O & C++20 Text Formatting

19.9.4 C++20 std::format Field Width and Precision Placeholders
You can programmatically specify field widths and precisions using nested placeholders
in a format specifier. Figure 19.23 displays the double value 123.456 in a field of 8 char-
acters with precisions of 0–4. In line 13, the argument value is the number to format. In
the format specifier "{:{}.{}f}", the nested placeholders to the right of the colon (:) are
replaced left-to-right by the values of the arguments width and precision, respectively.

1 // fig19_22.cpp
2 // C++20 text-formatting numeric formatting options.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 std::cout << "Displaying signs and padding with leading 0s:\n"
8 << std::format("[{0:+10d}]\n[{0:+010d}]\n\n", 27);
9

10 std::cout << "Displaying a space before a positive value:\n"
11 << std::format("{0:d}\n{0: d}\n{1: d}\n\n", 27, -27);
12
13 std::cout << "Displaying a base indicator before a number:\n"
14 << std::format("{0:d}\n{0:#b}\n{0:#o}\n{0:#x}\n", 100);
15 }

Displaying signs and padding with leading 0s:
[+27]
[+000000027]

Displaying a space before a positive value:
27
 27
-27

Displaying a base indicator before a number:
100
0b1100100
0144
0x64

Fig. 19.22 | C++20 text-formatting numeric formatting options.

1 // fig19_23.cpp
2 // C++20 text-formatting field width and precision placeholders.
3 #include <format>
4 #include <iostream>
5
6 int main() {
7 std::cout << "Demonstrating field width and precision placeholders:\n";
8
9 double value{123.456};

10 int width{8};

Fig. 19.23 | C++20 text-formatting field width and precision placeholders.

20

pp p _ _ g y, p ,

19.10 Wrap-Up 19.33

19.10 Wrap-Up
This chapter showed C++ input/output formatting with streams. You learned about the
stream-I/O classes and predefined objects. We discussed ostream’s formatted and unfor-
matted output capabilities performed by the put and write functions. You learned about
istream’s formatted and unformatted input capabilities performed by the eof, get, get-
line, peek, putback, ignore and read functions. We discussed stream manipulators and
member functions that perform formatting tasks:

• dec, oct, hex and setbase for displaying integers

• precision and setprecision for controlling floating-point precision

• and width and setw for setting field width.

You also learned additional formatting with iostream manipulators and member
functions:

• showpoint for displaying decimal point and trailing zeros

• left, right and internal for alignment

• fill and setfill for padding

• scientific and fixed for displaying floating-point numbers in scientific and
fixed notation

• uppercase for uppercase/lowercase control

• boolalpha for specifying Boolean format

• and flags and fmtflags for resetting the format state.

You’ll encounter many of the preceding capabilities in legacy C++ code.
Finally, we presented many of C++20’s more concise and convenient text-formatting

capabilities, including presentation types to specify data types to format, positional argu-
ments, field widths, alignment, numeric formatting and using placeholders to specify field
widths and precisions.

11
12 for (int precision{0}; precision < 5; ++precision) {
13 std::cout << std::format("{:{}.{}f}\n", value, width, precision);
14 }
15 }

Demonstrating field width and precision placeholders:
 123
 123.5
 123.46
 123.456
123.4560

Fig. 19.23 | C++20 text-formatting field width and precision placeholders.

pp p _ _ g y, p ,

19.34 Chapter 19 Stream I/O & C++20 Text Formatting

pp p _ _ g y, p ,

