Глава 10. Система Creo Elements/Pro

10.1. Интерфейс системы

Интерфейс системы (рис. 10.1) можно разделить на девять основных областей.

Рис. 10.1. Интерфейс системы Pro/Engineer

1. **Область графики** — рабочая область, в которой рассматриваются, создаются и модифицируются элементы моделей (деталей, сборок и чертежей).

2. **Главное меню системы**, расположенное в верхней части экрана и содержащее такие стандартные опции, как Файл, Править, Вид и т. д. (рис. 10.2).

<u>Файл Править Вид Вставить Анализ Данные Приложения Инструменты Окно С</u>правка

Рис. 10.2. Главное меню системы

3. Панели инструментов, содержащие значки часто используемых инструментов и функций (рис. 10.3). Часть панелей инструментов, значки которых действуют на все изображение, располагается горизонтально непосредственно под Главным меню, а другая часть, ответственная за выполнение отдельных графических операций, находится у правой границы экрана, справа от области графики.

Рис. 10.3. Основная панель инструментов

4. **Область сообщений**, служащая для вывода подсказок пользователю, обеспечения обратной связи и вывода сообщений системы (рис. 10.4). Эта область располагается непосредственно под горизонтальной панелью инструментов.

Рис. 10.4. Область сообщений

- 5. **Панель управления** (рис. 10.5), расположенная между областью сообщений и областью графики. Она появляется, когда пользователь создает и определяет параметры формируемого элемента модели. Панель обеспечивает:
 - контроль, задание, ввод и редактирование параметров создаваемых элементов твердотельной модели. При этом все изменения немедленно отображаются на графической модели, представленной на экране;
 - доступ к дополнительным опциям реализуемой (выполняемой) операции с помощью различных вкладок;
 - доступ к значкам, которые располагаются в правой части панели управления и реализуют такие опции, как Пауза, Предварительный просмотр результатов и т. д.
- 6. Дерево модели (чертежа) (рис. 10.6, *a*, *б*), которое находится в левой части экрана дисплея. В нем отражаются все операции построения модели (чертежа) детали в соответствии с последовательностью их выполнения.

ſ	Выберите поверхность, ось или точку для размещения отверстия.	🖁 2 выбрано	Bce •	
			II 🛛 👓 🖌 🗙	
	Размещение Форма Заметка Свойства			

Рис. 10.5. Панель управления

Рис. 10.6. Деревья операций построения

 Диалоговые окна — контекстно-зависимые окна (рис. 10.7), отображаемые системой для запрашивания у пользователя необходимой системе информации.

Pattin	ляние 🗴			
Анализ	Элемент			
От	А_5:F14(ОПОРНАЯ ОСЬ)			
	Использовать как ось			
До	А_7:F16(ОПОРНАЯ ОСЬ)			
	Использовать как ось			
Проекци	RIGHT:F1(ODOPHAR DOCK			
паправ	Ппоскость вида			
СК	Декартова			
🗹 Обно	вить			
Проекционное расстояние = 29.0000				
Быстрый • ALYSIS_DISTANCE				
0				

Рис. 10.7. Диалоговое окно

7	ПОПЕР СЕЧ СОЗД	3
	Плоское	1
	Смещение	
	Зона	
	В одну сторону	
	В обе стороны	
	Одиночное	
	Массив	
	Готово	
	Выход	

Рис. 10.8. Менеджер меню

- Менеджер меню каскадное меню (рис. 10.8), которое появляется у правого края экрана при использовании определенных функций и режимов системы. В этих меню работа осуществляется сверху вниз. Выделенные в меню опции устанавливаются автоматически.
- 9. **Лента меню чертежа** (рис. 10.9) контекстное меню, которое при работе с чертежами выводится в области интерфейса над областью графики.

	Компон	овка Таблица Аннотации 🤇	Эскиз П	росмотр Опубли	ковать			
ſ		🛅 Новый лист		Ва Проекционный	9 Вид чертежа		Показ компонентов	
L	Настройка листа		ч Выносной	🗇 Показ измененных кромок	Cruch	Показ кромок	Æ	
	чертежа	одели Сарана Саромостить или копировать листы	общий	🖉 Дополнительный	а 🖨 Преобразовать в объекты чертежа	линии	ј∎ Стрелки	
Документ			Виды модели 👻			Формат 👻	Вотарить -	

Рис. 10.9. Лента меню чертежа

Лента группирует команды для выполнения логически связанных задач в виде вкладок и групп.

10.2. Особенности формирования объемных элементов

В настоящее время при создании 3D-объектов сложной конфигурации в системе Creo Elements/Pro в основном используется понятие эскиза сечения. На основе сформированного эскиза или ряда эскизов формируется объемный твердотельный базовый элемент (объемный примитив), над которым могут производиться булевы операции склеивания (объединения) или вычитания с ранее созданным объемным примитивом. Часто используются и некоторые другие специфические конструкторские операции (например, создание фасок, сглаживание кромок, зеркальное отображение, дублирование и т. п.). Последовательность подобных действий конструктора над базовыми объемными примитивами обеспечивает постепенное формирование 3D-модели требуемой формы наиболее эффективным способом.

Базовые сплошные (твердотельные) трехмерные примитивы создаются в основном на различных принципах использования предварительно создаваемого 2D-эскиза сечения. Такие базовые элементы могут строиться путем:

- Э вытягивания эскиза перпендикулярно его плоскости на определенную глубину (с добавлением или удалением материала). При этом глубину вытягивания можно задавать различными способами: на заданную величину, на заданную величину симметрично относительно плоскости эскиза, до следующей или до выбранной поверхности, а также в обе стороны на разную глубину;
- Э вращения эскиза вокруг оси, лежащей в плоскости эскиза, с целью добавления или удаления материала в соответствии с формируемой при этом базовой фигурой. Эскиз должен быть замкнутым и располагаться по одну сторону оси. Угол его вращения можно задавать в одну или симметрично в обе стороны от

плоскости эскиза на заданную величину, до выбранной поверхности или в две стороны на различные углы или до выбранных поверхностей;

- О создания ребра заданной толщины с помощью открытого сечения (открытого эскиза). Ребра в конструкцию обычно вводят для усиления механической прочности формируемой детали. При этом геометрия ребра автоматически состыковывается (соизмеряется) со смежной геометрией фигуры, для которой это ребро создается;
- О протягивания замкнутого эскиза перпендикулярно разомкнутой заданной траектории сложной конфигурации, при котором формируются фигуры с постоянным сечением. При этом траектория движения сечения не должна пересекать сама себя, а радиус ее изгиба не должен быть настолько мал, чтобы сечение при движении вдоль траектории пересекало само себя. При этом фигура может быть создана или со свободными, или только с касающимися других тел (доходящими до них), или с объединенными с другими поверхностями концами, то есть полностью присоединенными (прилегающими) концами к ранее созданным частям тела;
- протягивания разомкнутого эскиза перпендикулярно замкнутой траектории без создания или с созданием внутренней поверхности;
- О сопряжения нескольких ранее созданных параллельных сечений различной формы, которые характеризуются одинаковым числом вершин (одинаковым числом ребер у формируемой фигуры) для создания своеобразного выступа или выреза. Однако в виде исключения сопряжение может начинаться и заканчиваться точкой, то есть допускается начальное и конечное сечение в виде точки. При этом сопряжение заданных сечений может выполняться прямым (прямыми линиями) или сглаженным (гладкими линиями) способом. Формируемый выступ может создаваться и как сплошное, и как полое тело с определенной толщиной стенок;
- О создания отверстий различного профиля на плоскости или цилиндрической поверхности. При этом можно менять диаметр и задавать глубину отверстия различными способами: менять угол наклона сверла, диаметр и глубину цековки, угол и диаметр зенковки, а также создавать зенковки на выходе отверстия.

Наряду с применением эскизов сечений для создания базовых элементов в конструкторской системе Creo Elements/Pro используется ряд программных средств, обеспечивающих создание специфических конструкторских элементов. К ним можно отнести:

- О создание тонкостенных оболочек путем «выдалбливания» материала в твердотельной оригинальной модели, в результате чего остаются только стенки указанной толщины. При этом можно создавать как открытую, так и полностью закрытую оболочку;
- создание скруглений и фасок различной конфигурации на пересекающихся поверхностях путем выбора этих поверхностей или соответствующих кромок и ребер;
- создание групп элементов на основе описания одного объекта путем множественного копирования с перемещением и вращением;