
Ввод информации

Мышь, перо и клавиатура
Взаимодействие с программой пользователь осуществляет с помощью пера или аппаратных
кнопок на самом устройстве. А где же мышь и клавиатура? Ну, предположим, что клавиа-
туру можно заменить ее виртуальным аналогом на экране КПК. Она имеет практически ту
же функциональность, что и настоящая клавиатура. Кроме того, следует помнить, что су-
ществуют устройства с настоящей, хоть и маленькой клавиатурой. Что же касается мыши,
то ее роль с успехом выполняет перо, которое иногда еще называют стилусом.

Но стоит заметить, что у пера нет возможности эмулировать нажатие правой кнопки
мыши. Когда пользователь применяет перо, то генерируются события MouseDown, MouseMove,
MouseUp и Click. Первые три события могут сообщить о позиции курсора, как и события из
настольной версии Windows.

Отдельно надо отметить, что смартфоны не имеют сенсорного экрана и не могут ис-
пользовать перо. А роль клавиатуры выполняют цифровые клавиши набора номера и не-
сколько дополнительных кнопок. Следовательно, логика работы программы на смарт-
фонах должна отличаться от работы приложения на устройствах с сенсорным экраном.
Для сравнения можно привести пример игры Solitaire, которая входит в состав Windows
Mobile. Вы можете запустить эту игру на эмуляторах и сравнить управление в этой
игре на устройствах разного типа. На устройствах с сенсорным экраном перетаскивание
карт из колоды производится пером и данное действие очень похоже на перетаскивание
карты с помощью мыши в этой же игре на настольном компьютере. Совсем по-другому
построен интерфейс игры на смартфоне. Все стопки карт пронумерованы и соответству-
ют клавишам телефона. И пользователю остается только нажимать клавиши с соответ-
ствующими цифрами.

Курсоры
Так как пользователь при работе использует перо, то Windows Mobile не отображает на
экране устройства стандартную стрелку курсора. Предполагается, что пользователь может
самостоятельно попасть острым концом пера в маленькую кнопку или другой элемент.
Но у мобильных систем курсоры все же есть. Первый из них является аналогом песочных
часов в настольной версии Windows и выглядит как анимированный круг с разноцветными
секторами. Второй курсор можно увидеть при вызове контекстного меню. Он выглядит
как множество красных маленьких кружков, которые постепенно появляются вдоль во-
ображаемой окружности.

5

82   Глава 5  •  Ввод информации

Песочные часы
При выполнении длительных ресурсоемких операций
нужно показать пользователю, что устройство работа-
ет, а не зависло. Лучше всего вывести на экран устрой-
ства курсор ожидания. В карманных компьютерах
в качестве такого курсора используются не песочные
часы, как в настольных компьютерах, а анимирован-
ный разноцветный круг. Установить данный тип кур-
сора в приложении очень просто, что иллюстрирует
фрагмент кода, приведенный в листинге 5.1.

Листинг 5.1

// Устанавливаем курсор ожидания
Cursor.Current = Cursors.WaitCursor;

// возвращаем курсор по умолчанию
Cursor.Current = Cursors.Default;

На рис. 5.1. показано приложение с соответствую-
щим курсором.

Обработка события Tap-and-Hold
Так как в карманных компьютерах не используется правая кнопка мыши, то для вызова
контекстного меню используется операция Tap-and-Hold. Пользователь касается пером
поверхности экрана и некоторое время удерживает нажатие. Если элемент, на поверхности
которого находится перо, связан с элементом ContexMenu, то на экране появится контекстное
меню. А что делать, если мы хотим создать собственный обработчик события Tap-and-
Hold? В этом случае надо добавить в проект таймер и написать код для обработки событий
Mouse_Down, Mouse_Up и timer1_Tick. Для таймера следует задать интервал, необходимый для
инициирования события. Сам код приведен в листинге 5.2.

Листинг 5.2

private void Form1_MouseDown(object sender, MouseEventArgs e)
{
 // включаем таймер
 timer1.Enabled = true;
}

private void Form1_MouseUp(object sender, MouseEventArgs e)
{
 timer1.Enabled = false;
 label1.Text = "";
}

private void timer1_Tick(object sender, EventArgs e)
{
 label1.Text = "Вы нажали на экран";
}

Рис. 5.1. Отображение курсора
ожидания

Добавляем функциональность   83

ПРИМЕЧАНИЕ
Примеры CursorsAndKeys.

Эмуляция Tap
Когда пользователь касается пером сенсорного экрана, происходит так называемое со-
бытие Tap, которое сравнимо с событием Click мыши на обычных компьютерах. В неко-
торых случаях может понадобиться программно воспроизвести это событие для решения
различных задач. Для этого нам понадобится вызвать функцию Windows API mouse_event
(листинг 5.3).

Листинг 5.3

using System.Runtime.InteropServices;

[DllImport(“coredll”)]
private static extern void mouse_event(MOUSEEVENTF dwFlags,
int dx, int dy, int dwData, UIntPtr dwExtraInfo);

[Flags()]
private enum MOUSEEVENTF
{
 MOUSEEVENTF_MOVE = 0x1,
 MOUSEEVENTF_LEFTDOWN = 0x2,
 MOUSEEVENTF_LEFTUP = 0x4,
 MOUSEEVENTF_ABSOLUTE = 0x8000,
}

private void menuItemClickStart_Click(object sender, EventArgs e)
{
 // Перемещаем перо в верхний левый угол экрана
 // и нажимаем пером на экран (Tap)
 // Тем самым мы нажимаем кнопку Пуск и вызываем меню этой кнопки
 mouse_event(MOUSEEVENTF.MOUSEEVENTF_MOVE | MOUSEEVENTF.MOUSEEVENTF_ABSOLUTE,
 2, 2, 0, UIntPtr.Zero);
 // Нажимаем и отпускаем
 mouse_event(MOUSEEVENTF.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, UIntPtr.Zero);
 mouse_event(MOUSEEVENTF.MOUSEEVENTF_LEFTUP, 0, 0, 0, UIntPtr.Zero);
}

Для наглядности примера мы перемещаем воображаемый курсор мыши в верхнюю часть
экрана с координатами 2,2 и эмулируем нажатие пера в этой точке. Так как в левом верхнем
углу экрана находится кнопка Пуск, то программное нажатие в этой точке вызывает меню
этой кнопки.

ПРИМЕЧАНИЕ
Пример MouseEventDemo.

Добавляем функциональность
На данный момент .NET Compact Framework пока не поддерживает методы OnEnter и OnLeave
для элементов. Решение проблемы нашлось на сайте MSDN. Так как метод OnMouseMove под-

84   Глава 5  •  Ввод информации

держивается, мы можем воспользоваться им в сочетании с методом Capture для определения,
когда указатель мыши входит или выходит за пределы элемента управления. Для демонстра-
ции мы создадим простой элемент управления MouseCapture, который будет окрашиваться
синим цветом при движении пера внутри элемента и серым цветом при выходе за пределы
элемента. Выход за пределы элемента определяется при помощи свойства ClientRectangle
и метода OnMouseMove. Для начала создаем новый класс, MouseCapture (листинг 5.4).

Листинг 5.4

public class MouseCapture : Control
{
 public MouseCapture()
 {
 this.BackColor = Color.LightGray;
 }

 // Если перо над элементом, то Capture равно true
 protected override void OnMouseMove(MouseEventArgs e)
 {
 this.Capture = this.ClientRectangle.Contains(e.X, e.Y);
 if (this.Capture == true)
 this.BackColor = Color.Blue;
 else
 this.BackColor = Color.LightGray;
 }
}

Теперь осталось добавить код в событие Load основной формы (листинг 5.5).

Листинг 5.5

private void Form1_Load(object sender, EventArgs e)
{
 MouseCapture mc = new MouseCapture();
 mc.Parent = this;
 mc.Bounds = new Rectangle(50, 50, 140, 150);
}

Обратите внимание, что изменение цвета будет происходить при условии, если вы бу-
дете перемещать перо, как это вы обычно делаете при операции перетаскивания.

ПРИМЕЧАНИЕ
Пример AddedFunctionality.

InputPanel
На большинстве мобильных устройств нет стандартной клавиатуры, поэтому ввод текста
осуществляется с помощью виртуальной клавиатуры SIP. В Visual Studio 2008 клавиатура
SIP представлена элементом управления InputPanel, о котором мы немного поговорили
в главе 3. Рассмотрим работу с этим элементом подробнее. Создадим новый проект и до-
бавим в проект элемент InputPanel. Вы уже наверняка видели, что данная виртуальная кла-
виатура имеет несколько предопределенных режимов ввода информации. Предположим,
мы хотим программно переключиться на режим распознавания символов (листинг 5.6).

InputPanel   85

Листинг 5.6

private void button1_Click(object sender, EventArgs e)
{
 foreach (InputMethod m in inputPanel.InputMethods)
 {
 if (m.Name == "Letter Recognizer")
 inputPanel.CurrentInputMethod = m;
 }
 inputPanel1.Enabled = true;
}

Пример прекрасно работает в эмуляторе, но на самом деле в коде есть потенциальная
ошибка. На реальном устройстве вполне может не оказаться метода Letter Recognizer.
Именно так обстоит дело на моем реальном устройстве. Таким образом, нам необходимо
сначала получить список имеющихся методов панели ввода. Но сначала мы получим число
имеющихся методов (листинг 5.7).

Листинг 5.7

private void button2_Click(object sender, EventArgs e)
{
 MessageBox.Show(inputPanel.InputMethods.Count.ToString());
}

Свойство InputPanel.InputMethodCollection.Count возвращает число методов у клавиатуры.
Обычно их три:

Keyboard;yy

Letteryy Recognizer;

Blockyy Recognizer.

Но тем не менее мы не должны уповать на то, что нужный нам метод имеется на устрой-
стве. Мы можем получить реальный список методов (листинг 5.8).

Листинг 5.8

/// <summary>
/// Получаем коллекцию методов ввода
/// </summary>
private void GetInputMethods()
{
 this.listBox1.Items.Clear();

 // Получаем коллекцию InputMethods
 // и каждый метод выводим в список
 foreach (InputMethod im in inputPanel.InputMethods)
 {
 this.listBox1.Items.Add(im.Name);
 }
}

ПРИМЕЧАНИЕ
Пример InputPanelDemo.

86   Глава 5  •  Ввод информации

�
Рис. 5.2. Эмулятор устройства	 Рис. 5.3. Обработка нажатий клавиш
с клавиатурой	 навигации

Клавиатура
В последнее время стали появляться устройства с настоящей встроенной клавиатурой.
Как правило, эти устройства имеют квадратный экран. Среда разработки поддерживает
эмуляторы подобных моделей, например эмулятор Pocket PC 2003 SE (рис. 5.2).

Кроме того, на устройствах имеются клавиши навигации, клавиша Enter и кнопки за-
пуска определенных приложений. Все эти клавиши могут обрабатывать стандартные
события.

Клавиши навигации
Если в процессе создания приложения в режиме работы с формой щелкнуть мышью на
любой из кнопок навигации, то среда разработки сгенерирует код для этих кнопок в со-
бытии Form_KeyDown. В листинге 5.9 приведен пример обработчика этого события.

Листинг 5.9

private void Form1_KeyDown(object sender, KeyEventArgs e)
{
 if ((e.KeyCode == System.Windows.Forms.Keys.Up))
 {
 label1.Text = "Клавиша Вверх";
 }

Клавиатура   87

 if ((e.KeyCode == System.Windows.Forms.Keys.Down))
 {
 label1.Text = "Клавиша Вниз";
 }
 if ((e.KeyCode == System.Windows.Forms.Keys.Left))
 {
 label1.Text = "Клавиша Влево";
 }
 if ((e.KeyCode == System.Windows.Forms.Keys.Right))
 {
 label1.Text = "Клавиша Вправо";
 }
 if ((e.KeyCode == System.Windows.Forms.Keys.Enter))
 {
 label1.Text = "Клавиша Enter";
 }
}

Как видите, приложение определяет нажатую клавишу при помощи перечисления System.
Windows.Forms.Keys. Если открыть виртуальную клавиатуру и нажать клавиши со стрелка-
ми, то можно убедиться, что они тоже инициируют событие Form_KeyDown (рис. 5.3). Если
протестировать пример на устройстве с настоящей клавиатурой, то можно заметить, что
приложение правильно обрабатывает нажатие встроенных клавиш со стрелками.

Нажатия специальных кнопок
На мобильных устройствах имеются различные функциональные кнопки. Например,
есть отдельная кнопка выключения устройства. На самом деле при нажатии этой кнопки
устройство не выключается, а переходит в особый спящий режим. В мобильных устрой-
ствах программы и данные хранятся в памяти, и если устройство действительно выклю-
чить, то все приложения и данные просто пропадут. Разработчик может программно пере-
вести устройство в спящий режим, имитируя нажатие этой кнопки выключения с помощью
функции API keybd_event, как показано в листинге 5.10.

Листинг 5.10

/// <summary>
/// Функция имитирует нажатия клавиш на клавиатуре
/// </summary>
/// <param name="bVk">Виртуальный код клавиши для имитации
/// нажатия и отпускания клавиши</param>
/// <param name="bScan">Зарезервировано - установлено в
/// 0</param>
/// <param name="dwFlags">Флаг</param>
/// <param name="dwExtraInfo">Дополнительная информация</param>
 [DllImport("coredll.dll", CharSet = CharSet.Unicode)]
public static extern void
keybd_event(byte bVk, byte bScan, int dwFlags, int dwExtraInfo);
// константа для кнопки выключения устройства
public const int VK_OEM_8 = 0xDF;
private void butOff_Click(object sender, EventArgs e)

продолжение  

88   Глава 5  •  Ввод информации

Листинг 5.10 (продолжение)

{
 // Имитируем нажатие кнопки выключения устройства
 keybd_event(VK_OEM_8, 0, 0, 0);
}

Раз уж мы заговорили о функциональных клавишах, то рассмотрим еще один пример.
На устройствах Windows Mobile Professional имеется кнопка с изображением красного
телефона, с помощью которого можно прервать телефонный разговор. Эта кнопка соот-
ветствует клавише F4. Таким образом, если вам необходимо программно нажать данную
клавишу в приложении, то пишем следующий код с использованием той же функции
keybd_event (листинг 5.11).

Листинг 5.11

[DllImport("coredll.dll", CharSet = CharSet.Unicode)]
public static extern void
keybd_event(byte bVk, byte bScan, int dwFlags, int dwExtraInfo);

// константа для кнопки End
public const int VK_F4 = 0x73;

// Флаг отпускания клавиши
public const int KEYEVENTF_KEYUP = 0x0002;

private void butKeyEnd_Click(object sender, EventArgs e)
{
 // имитируем нажатие и отпускание кнопки End
 keybd_event(VK_F4, 0, 0, 0);
 keybd_event(VK_F4, 0, KEYEVENTF_KEYUP, 0);
}

ПРИМЕЧАНИЕ
Пример KeysPress.

Разработка приложений без использования пера
В этой главе мы рассмотрели несколько примеров использования пера и клавиатуры
в приложениях. Но важно понимать, как использовать устройства ввода информации
в своих программах. В последнее время Microsoft стала уделять этому вопросу повы-
шенное внимание, пытаясь разработать определенные стандарты в этом вопросе. Сейчас
прослеживается четкая тенденция стирания граней между смартфонами и карманными
компьютерами. Потребители все больше склоняются к выбору гибридных устройств,
имеющих возможности телефона и компьютера. По новой классификации от Microsoft
такие устройства относятся к группе Windows Mobile Professional. В таких устройствах
основной приоритет отдается мобильной телефонии. Для удобства пользователя работа
с телефоном должна быть доступна пальцами одной руки. Это стало особенно актуально
с появлением очень модного телефона iPhone, в котором управление ведется именно
пальцами на сенсорном экране. Представьте себе человека в офисе, который одновременно

Разработка приложений без использования пера   89

держит телефон в одной руке и ручку в другой, делая необходимые пометки. Понятно, что
такой пользователь не будет доставать перо, чтобы нажать кнопку ответа на телефонный
звонок или кнопку отбоя. Таким образом, перед разработчиком стоит задача разработки
приложений, которыми можно управлять с помощью одной руки. Естественно, в данном
случае мы не рассматриваем случаи разработки игр и других программ, где действуют свои
правила. Однако вернемся к нашей теме.

Основные принципы
Итак, в современных устройствах под управлением Windows Mobile присутствуют две
клавиши Soft Key 1 и Soft Key 2. К этим клавишам привязываются элементы меню. Пользо-
ватель должен иметь возможность управлять программой одной рукой, перемещаясь от
одного элемента управления к другому при помощи еще одной клавиши, Action, которая
находится в центре устройства. Если устройство имеет клавиатуру, то пользователь должен
иметь возможность пользоваться клавишей Tab с такой же функциональностью. Кроме
того, желательно, чтобы пользователь также мог нажать на элемент, имеющий фокус, своим
пальцем вместо пера — нужно позаботиться об удобных размерах элементов управления.

Теперь рассмотрим таблицу, в которой собраны основные операции при работе с раз-
личными клавишами (табл. 5.1).

Таблица 5.1. Поведение клавиш Action и клавиш клавиатуры

Тип клавиши Название
клавиши Описание

Action Key Righ Перемещает фокус на следующий элемент. Если элемент
имеет редактируемый текст, то перемещает каретку в этом
тексте

Action Key Left Перемещает фокус на предыдущий элемент в tab-order.
Если элемент содержит редактируемый текст, то переме-
щает каретку в этом тексте

Action Key Down Перемещает фокус на следующий элемент в tab-order.
Если элемент содержит список значений, то перемещает
выделение по списку (ComboBox и ListBox)

Action Key Up Перемещает фокус на предыдущий элемент в tab-order.
Если элемент содержит список значений, то перемещает
выделение по списку (combo box и list)

Action Key Center Активирует событие Click. Если элемент имеет выпадаю-
щий список, то данное событие должно разворачивать или
сворачивать его (combo box)

Keyboard Tab Перемещает фокус на следующий элемент

Keyboard Shift+Tab Перемещает фокус на предыдущий элемент

Keyboard Enter Активирует событие Click

Рассмотрим эти правила подробнее. Создадим пример, иллюстрирующий наши прави-
ла. Проверьте, что передача фокуса от элемента к элементу идет в правильном порядке.
Для этого надо проверить значение TabIndex у каждого элемента. Более удобный способ —

90   Глава 5  •  Ввод информации

включить режим показа порядка перехода фокуса (меню View | Tab Order). В этом случае вы
сможете визуально просматривать и редактировать порядок передачи фокуса. Возможны
ситуации, когда не требуется, чтобы элемент управления получал фокус. В этом случае
присвойте его свойству TabStop значение False. В принципе, наши первые приготовления
не сильно отличаются от принципов дизайна формы для настольных приложений. Исполь-
зование клавиши Tab на клавиатуре или на панели ввода SIP не представляет трудностей.
Далее рассмотрим вопросы применения клавиш навигации (Action Key). Большинство мо-
бильных устройств не имеет встроенной клавиатуры, чтобы пользоваться клавишей Tab.
Использовать кнопку Tab на виртуальной клавиатуре — значит, доставать перо и отказаться
от затеи создания программ для одной руки. Но на всех устройствах Windows Mobile име-
ются кнопки навигации с пятью действиями: вверх, вниз, влево, вправо, Enter.

Если вы попробуете запустить проект и понажимать на клавиши навигации, то увидите,
что не всегда переход фокуса происходит как задумывалось. Здесь требуется определенная
доработка.

Очень хорошая статья «Developing Stylus-Free Windows Mobile Professional Applications»
на данную тему имеется на сайте MSDN по адресу http://msdn2.microsoft.com/en-us/library/
bb985500.aspx.

Дополнительные материалы
Если вы хотите узнать о клавиатуре еще больше, то стоит обратить внимание на блог Алек-
са Яхнина, который можно найти по адресу blog.opennetcf.org/ayakhnin. Там можно найти
статью «Keyboard hook in the CF v2». В данной статье рассказывается о перехвате всех
сообщений, которые посылаются при нажатии любых кнопок устройства. Также может
быть полезна статья «Custom SIP Control for CF». Автор статьи предлагает собственную
реализацию элемента InputControl, который содержит свою виртуальную клавиатуру.
Этот пример может пригодиться при создании приложения, в котором не используется
стандартная панель ввода SIP, но при этом пользователь должен иметь возможность ввода
информации.

