Глава 4. Выдержки из стандартов на швы сварных соединений

Высокие требования к обеспечению надежности изделий, выполненных с помощью сварки, большое разнообразие способов сварки и конструктивных особенностей сварных соединений деталей, а также накопленный производственный опыт закреплены в стандартах на сварные швы. Поэтому при разработке конкретной конструкции изделия, в котором используется соединение деталей сваркой, необходимо руководствоваться требованиями этих стандартов.

Мы познакомимся с их общими требованиями к сварным соединениям, обозначениями и конструктивными элементами швов. В учебном пособии приведены выдержки из отдельных стандартов, содержание которых позволяет понять их общую структуру и использовать для выполнения учебных работ.

С целью сокращения общего объема пособия сделаны некоторые отступления от официальных стандартов в структуре представленных далее таблиц, которые даны для использования в учебных работах. Однако эти отступления не искажают смысла, содержания и требований стандарта и дают возможность его полноценного использования.

Заметьте: если конструкция или параметры конкретного соединения не соответствуют стандарту, то такие соединения оформляются по правилам обозначения нестандартных швов, то есть конструктивные элементы и параметры шва разрабатываются конструктором и показываются на чертеже.

Стандарты, требованиям которых должен соответствовать сварной шов, указываются в обозначении шва или в технических требованиях над основной надписью, как это показано в разделе 2.3. Стандартами устанавливаются условные обозначения способов сварки, типов сварных швов, их буквенно-цифровые обозначения и параметры.

Стандарты сопровождаются определенными регламентами. Например, в стандарте указывается, что сварка стыковых соединений деталей неодинаковой толщины при разнице, не превышающей значений, указанных в табл. 4.1, производится так же, как деталей одинаковой толщины (рис. 4.1).

При этом размеры элементов шва следует выбирать по большей толщине детали s. При большей разности толщины деталей, чем показано в табл. 4.1, у детали большей толщины должен быть сделан скос с одной или двух сторон (рис. 4.2). При

этом размеры элементов кромок и шва в соответствии с назначаемым типом шва выбирают по меньшей толщине детали.

Таблица 4.1.	Допустимая	разница	толшины	деталей. мм

Толщина s ₁ тонкой детали	Допустимая разность толщины
От 1 до 4	1
Свыше 4 до 20	2
Свыше 20 до 30	3
Свыше 30	4

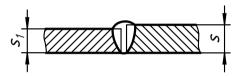


Рис. 4.1. Сварка деталей при разности толщины в пределах, указанных в табл. 4.1

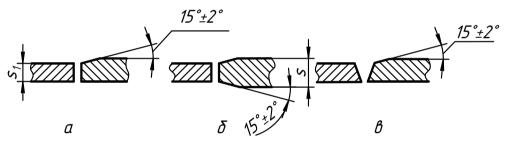


Рис. 4.2. Подготовка к сварке деталей разной толщины

Размеры K и K_1 катета шва устанавливаются расчетом при проектировании (рис. 4.3). При этом размер катета должен быть не более 3 мм для деталей толщиной до 3 мм включительно и 1,2s, где s — толщина более тонкой детали, при сварке деталей толщиной свыше 3 мм.

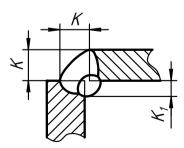


Рис. 4.3. Величины катета шва определяются расчетом

Допускается выпуклость (рис. 4.4, a) и вогнутость (рис. 4.4, δ) шва до 30 % его катета, но не более 3 мм. Катетом K_a шва, установленного при проектировании, является катет наибольшего прямоугольного треугольника, вписанного во внешнюю часть углового шва. При симметричном шве за катет К, принимается любой из равных катетов, при несимметричном шве — меньший. В ответственных конструкциях требуются разделка кромок присоединяемой детали и проварка шва на всю ее толщину (рис. 4.4, в). В этом случае расчетной величиной является наименьшая толщина присоединяемой детали.

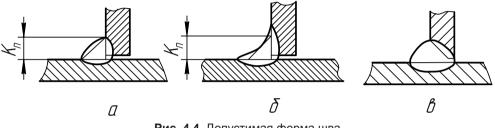


Рис. 4.4. Допустимая форма шва

Указанным регламентом и рекомендациями можно пользоваться в тех случаях, когда они не противоречат условиям используемого стандарта. Например, они не распространяются на ГОСТ 16037-80* «Соединения сварные стальных трубопроводов».

Предельные значения ширины е шва, приведенные в табл. 4.2, соответствуют предельным значениям интервала толщин s металла, допускаемых для данного типа шва. В стандарте даются более мелкие интервалы промежуточных значений толщин свариваемых деталей и соответствующая им ширина е шва, а в учебных работах ее можно определить линейной интерполяцией.

Например, для шва 49 и 410 (табл. 4.2) в интервале толщин металла 3...60 мм ширина е шва должна быть в пределе 8...65 мм.

Обозначим $s_{\min} = 3$ мм — нижняя предельная толщина детали; $s_{\max} = 60$ мм — верхняя предельная толщина детали; $e_{\min} = 8$ мм — ширина шва, соответствующая s_{\min} ; $e_{\rm max}$ = 65 мм — ширина шва, соответствующая $s_{\rm max}$. Среднее приращение ширины шва, приходящееся на единицу приращения толщины металла,

$$\delta e = \frac{e_{\text{max}} - e}{s_{\text{max}} - s}$$

Для промежуточной толщины s деталей в заданном интервале ширина шва должна быть

$$e = e_{\min} + \delta e (s - s_{\min}).$$

Например, свариваются детали толщиной s = 15 мм угловым швом 49. В нашем примере

$$\delta e = \frac{e_{\text{max}} - e_{\text{min}}}{e_{\text{max}} - e_{\text{min}}} = \frac{65 - 8}{60 - 3}$$

и номинальная ширина шва должна составлять

$$e = e_{\min} + \delta e (s - s_{\min}) = 8 + 1 (15 - 3) = 20 \text{ MM}.$$

Такой интерполяцией для определения параметра шва рекомендуется пользоваться во всех случаях, когда у вас нет подробных таблиц стандартных данных.

Основные типы, конструктивные элементы и размеры элементов сварных соединений, выполненных дуговой сваркой в защитном газе, устанавливаются ГОСТ 14771—76 для изделий из сталей и сплавов на железно-никелевой и никелевой основе. В стандарте приняты следующие условные обозначения способов сварки:

- ИН в инертных газах неплавящимся электродом без присадочного материала;
- $ИH_{\Pi}$ то же, но с присадочным металлом;
- ИП в инертных газах и их смесях с углекислым газом и кислородом плавящимся электродом;
- УП в углекислом газе и его смеси с кислородом плавящимся электродом.

Конструкция швов при сварке в защитных газах и их условное обозначение соответствуют таковым по ГОСТ 5264–80 (табл. 4.2), а численные значения геометрических параметров рекомендуется брать непосредственно по таблицам ГОСТ 14771–76, которые в данной работе не приведены.

4.1. Ручная электродуговая сварка

Выдержка из ГОСТ 5264—80 «Ручная электродуговая сварка» приведена в табл. 4.2. В ней показаны названия, конструктивные элементы подготовленных кромок деталей до соединения и после выполненной сварки, рекомендуемое применение данного шва и его условное обозначение. Ее содержание рекомендуется использовать для учебных практических работ с учетом замечаний, изложенных в начале главы 4. При недостатке информации следует обратиться непосредственно к стандарту.

Таблица 4.2. Ручная дуговая сварка. Соединения сварные. Основные типы швов, их конструктивные элементы и размеры, мм, в соответствии с ГОСТ 5264–80 (краткая выдержка)

Форма подготов-	Характер выпол-	Форма поперечного сечения и основные параметры	овные параметры	Толщина	Условное
ки кромок	ненного шва	подготовленных кромок	выполненного шва	свариваемых деталей	обозначе- ние шва
Соединение стыковое	9090				
Без скоса кромок	Односторонний	is	<u>Б</u>	14	[7]
		= 2	No.		
		s = s ₁	e ≤ 68; g = 12		
	Двусторонний	15	D d	25	23
		= 2			
		S = S ₁	$g = 12$; $e \le 810$		
Со скосом одной кромки	Односторонний	\$57		360	87
		S			
		Z = Z = Z = Z = Z = Z = Z = Z = Z = Z =	64. n < 2.5		
	Двусторонний	, \$\forall \times_{\tau}		360	C12
			5		
		Z = 5	$g \le 2.5$; $e = 1648$; $e_1 = 812$		