глава 3

Ткани и растения в интерьере

Покрывало на кровати

Довольно часто при моделировании интерьера возникает необходимость оживить его интересными деталями, создать эффект присутствия человека. Чашка кофе на столе, раскрытая книга, женские туфельки у шкафа лишат интерьер скуки и однообразия, придадут дополнительное настроение и желание рассматривать в нем каждую деталь. Интересными элементами являются ткани на кроватях и диванах. Удачно расположенные драпировки создают впечатление, что человек только что вышел из комнаты, предоставив нам возможность спокойно рассмотреть обстановку, в которой он живет. При моделировании тканей подобного рода помимо традиционных средств моделирования вам могут помочь несколько специализированных инструментов, а именно имеющиеся в программе 3ds Max 2008 модификатор Cloth (Ткань) и модуль просчета динамики объектов reactor, а также подключаемый модуль SimCloth3. Именно им мы и воспользуемся в данном случае, так как, на мой взгляд, SimCloth3 в работе несколько проще, чем встроенный модификатор Cloth (Ткань). Этот модуль обладает широкими возможностями, несложным интерфейсом и как нельзя лучше подходит для решения поставленной задачи. Бесплатная версия плагина SimCloth3 находится на прилагаемом к книге DVD.

Модуль SimCloth представляет собой подключаемый модификатор, который нужно применять для каждого элемента сцены, тем или иным образом участвующего в просчете динамики ткани. Эти элементы делятся на две группы — объекты-ткани (Cloth) и объекты-отражатели (Deflectors), то есть объекты, с которыми ткань будет взаимодействовать во время просчета. Сам просчет происходит в виде анимационного действия, в каждом кадре которого ткань постепенно меняет свою форму. Естественно, чем больше объектов задействовано в этом процессе, тем больше ресурсов компьютера потребляется и тем дольше длится процесс. Возможно, оптимальным решением будет такое: смоделировать покрывало в отдельной сцене, используя при этом простые объекты-примитивы, а затем просто добавить его в сложную сцену. Рассмотрим пример.

Допустим, у нас есть несложная модель кровати с матрацем, подушками и прикроватными тумбочками, и мы хотим застелить кровать покрывалом или даже несколькими (рис. 3.1). Сохраним копию этой сцены, в которой создадим ткань.

Рис. 3.1 Модель кровати без покрывала

ПРИМЕЧАНИЕ

Вы можете использовать файл Кровать-1.max, который находится в папке Examples\Сцены примеров\Глава 3 прилагаемого к книге DVD.

В данной сцене прикроватные тумбочки не будут участвовать в просчете ткани, поэтому сразу удалим их. Теперь сцена состоит из пола, матраца, плоскости кровати, спинки, трех подушек

и четырех ножек. Это достаточно большое количество объектов для быстрого просчета динамики ткани. Оптимизируем просчет и создадим единый объект-отражатель. Создайте объект Plane (Плоскость) из набора стандартных примитивов с размерами 300 × 300 см. Количество сегментов уменьшите до 1, задав соответствующее значение параметрам Length Segs (Количество сегментов по длине) и Width Segs (Количество сегментов по ширине) (рис 3.2).

Рис. 3.2 Создание объекта-отражателя

Преобразуйте полученную форму в Editable Poly (Редактируемая полигональная поверхность). В режиме редактирования Polygon (Полигон) выделите единственный центральный полигон, в свитке Edit Polygons (Правка полигонов) щелкните на маленькой кнопке Settings (Параметры), которая находится рядом с кнопкой Inset (Вставить). В открывшемся окне задайте параметру Inset Amount (Величина вставки) значение 60 см (рис. 3.3).

В режиме редактирования Polygon (Полигон) откорректируйте размер внутреннего полигона так, чтобы он был равен внешнему контуру кровати. Выдавите внутренний полигон по оси Y инструментом Extrude (Выдавить) до высоты 44 см (уровня верхней плоскости кровати) (рис. 3.4).

Рис. 3.3 Создание вставки в поверхности полигона

			Ń	7
ſ	_		7/	Π^{-}
	_		\mathbb{N}	Ų.
	_	_	$\boldsymbol{\mathcal{V}}$	
U	-		- ,	

ПРИМЕЧАНИЕ

Сцена на данном этапе находится в папке Examples\Сцены примеров\Глава 3 прилагаемого к книге DVD. Файл называется Кровать-2.max.

Спрячьте командой Hide Unselected (Скрыть невыделенное) контекстного меню все объекты, кроме объекта-отражателя и подушек. Объедините все подушки в одну форму командой Attach (Присоединить) свитка Edit Geometry (Правка геометрия), при необходимости преобразовав их в Editable Poly (Редактируемая полигональная поверхность). Теперь у вас есть два объекта — объект-отражатель, сочетающий в себе плоскость пола и верхнюю плоскость кровати, и объект-подушки (рис. 3.5).

При желании можно сделать объект-отражатель более сложным — с имитацией характерных выступов спинки или ножек кровати или других индивидуальных особенностей. Важно, чтобы

Рис. 3.4 Выдавливание внутренней вставки полигона

это было выполнено в пределах одной формы. В противном случае придется применять модификатор SimCloth ко всем отдельным объектам, а это сильно усложнит расчет динамики. Теперь создайте в окне проекции Top (Сверху) объект Plane (Плоскость) из набора стандартных примитивов с размерами 230 × 230 см и количеством сегментов по длине и ширине 20. Задавать слишком много сегментов на данном этапе не рекомендуется — вы сделаете это несколько позднее. Расположите объект-плоскость согласно рис. 3.6. Созданный объект и будет покрывалом.

Как вы видите, покрывало расположено несколько выше кровати и подушек, а по размеру несколько меньше плоскости пола. Важно, чтобы при просчете динамики покрывало не сползало с плоскости пола. В принципе внешние границы плоскости пола можно увеличить. Теперь пришло время расстелить покрывало на кровати. Поочередно примените плагин SimCloth3 к объектудефлектору, состоящему из построенной вами плоскости кровати, к подушкам и плоскости

Рис. 3.5 Группы объектов-отражателей

Рис. 3.6 Расположение объекта-покрывала

объекта-покрывала. Перейдите к настройкам плоскости-покрывала и в свитке General (Общие) установите переключатель Object type (Тип объекта) в положение Cloth (Ткань). Для объектовотражателей установите переключатель Object type (Тип объекта) в положение Deflector (Отражатель). Чтобы сделать просчет более точным, увеличьте время, отведенное на этот процесс, втрое. Для этого в области Simulation extent (Продолжительность симуляции) свитка Globals (Глобальные) увеличьте значение параметра End rame (Последний кадр) со 100 кадров до 300. Щелкните на кнопке Time Configuration (Конфигурация времени), которая находится в правом нижнем углу окна программы 3ds Max 2008 (не забудьте при этом отобразить нижнюю часть приложения, если вы спрятали ее при помощи плагина NoNiz.ms). В появившемся окне также задайте параметру End Time (Время окончания) значение 300 (рис. 3.7).

Б КРОВАТЬ-2.n	nax - Project Folder: C:\Documents and Settings\OSIRIS\Мои документы\\3dsmax - Autodesk 3ds Max 2008 - Di	splay : Direct 3D	- PX
File Edit Tools (Group Views Create Modifiers reactor Animation Graph Editors Rendering Customize MAXScript Help		
P 9 1 5 1	◎ 治 💽 Ali 🖃 🔄 💽 🔄 🖅 View 🖃 🖳 X 😗 Z XY, 🕅 🐯 🏈, 📃 🖃 🕿 🦉	§ 😼 👁 View	- 6 -
Perspective		N.C. B.	1 I I 3
		Покрывало	
		, Modifier List	
	Time Configuration	Bevel	ManScaler
	Frame Rate	Silveen	HIVAV Man
	© NTSC C Film C SMPTE	Shell	Smooth
	C PAL C Custom C FRAME:TICKS	Lathe	Edit Poly
\sim	TTS. 100 ▼ C MM:SS:TICKS	Extrude	Edit Spline
	Playback	🍳 🖬 SimClot	n3
	P Real Time P Active Viewport Unity IP Loop	Plane	
	Direction: @ Forward C Beverse C Ping-Pong		
	Start Time: 0 \$ Length: 100 \$		
	200 End Time: 300 1 Frame Count: 101 1		
			9 0 133
		Smooth rest	ll II
	Key Steps	Iteration	is 1 📫
	V Use IrackBar	- Glo	hale
	Selected Ubjects Unity M Use Lutrent Transform	Simulation exte	ent
		Active tim	ie segment
	OK Cancel	Start frame	
			-1100 E
2		Substep	is 10 📫
1 - Z		Gravit	y 500.0
1		World scale	e 1.0
< 0/100		Collision tolerance	e 3.0 \$
	1 Object Sele 🖨 💽 🛪 -324.154cr Y. 510.902crr Z. 0.0cm Grid = 10.0cm Auto Key Selected 💌 🛏	41 b 16 66	9、母可,田,
	Click or click-and-drag to select objects 😥 🖇 Add Time Tag 🕺 Set Key 🕂 Key Filters 🗰	0 1 0	Σ $(?)$ \land \Box

Кнопка Time Configuration (Конфигурация времени)

Рис. 3.8 Просчет динамики ткани модуля SimCloth3

Не забудьте нажать кнопку Re-scale Time (Пересчитать время) и подтвердить произведенные изменения. Теперь время просчета динамики ткани будет длиться не 100 кадров, установленных по умолчанию, а 300, что позволит сделать сам просчет хоть и более длительным, зато более точным и интересным. Тем более что остановить просчет можно в любое время, когда результат вас устроит, не дожидаясь конца анимации.

Теперь можно нажимать кнопку начала просчета динамики START CALCULATION (Начать просчет), которая находится в свитке Globals (Глобальные), и наблюдать, как покрывало ложится на кровать, облегая складками подушки и углы (рис. 3.8).

Пока все выглядит достаточно неинтересно, и покрывало больше напоминает лист оцинкованного железа. Это связано с тем, что количество сегментов, которое мы выбрали для плоскости-

покрывала невелико, и объекту не хватает «мягкости». С помощью свойств модуля SimCloth3 можно компенсировать это, установив в свитке General (Общие) флажок Smooth result (Сгладить результат). Плотность создаваемой сетки управляется параметром Iterations (Повторение). Кроме того, на свойства объекта-ткани влияют параметры областей Stretch forces (Степень растяжения) и Bend forces (Степень изгиба). Измените значения параметров плагина SimCloth, как показано на рис. 3.9.

Опять нажмите кнопку начала просчета динамики START CALCULATION (Начало просчета), в результате чего анимация сцены будет просчитана заново. Теперь покрывало намного больше похоже на настоящее и лучше облегает складками подушки и края кровати (рис. 3.10).

Попробуйте поэкспериментировать с настройками модуля, так вы лучше поймете влияние разных параметров на свойства объектов и их взаимодействие. Обратите внимание на параметр Amount (Величина) в области Air drag (Плотность воздуха) он отвечает за плотность воздуха, в котором трансформируется ткань, а также на параметры Stretch (Натяжение) и Stiffness (Жесткость). Изменяя значения этих параметров, вы можете задать ткани такие свойства, которые вам нужны.

Полученную форму обязательно отредактируйте с помощью инструмента Paint Deformation (Художественная деформация) полигонального моделирования (не забудьте преобразовать объект в Editable Poly (Редактируемая полигональная поверхность)).

N 2 B (S

Рис. 3.9 Значения параметров модуля SimCloth3

Инструмент Relax (Расслабление) свитка Edit Geometry (Правка геометрии) позволит вам сделать складки более мягкими и живописными.

Уникальность модуля SimCloth3 заключается в том, что наблюдать за процессом деформации и воздействовать на него можно интерактивно — результат виден в окне проекции. Можно вращать объект и, передвигая вершины или грани объектов-отражателей, воздействовать на процесс непосредственно во время просчета. При этом складки можно буквально «лепить», как скульптор создает скульптуру из глины. Рассмотрим эти возможности подробнее и сделаем

Рис. 3.10 Покрывало после изменения параметров просчета динамики

покрывало более интересным. Нажмите кнопку Clear cache (Очистить память) — это позволит обнулить в памяти все примененные к объектам действия. Поверните покрывало так, чтобы оно стало перпендикулярным плоскости кровати. Нажмите кнопку START CALCULATION (Начало просчета) и просчитайте анимацию примерно до 26-го кадра. Остановите просчет. Должна получиться форма, показанная на рис. 3.11.

Преобразуйте объект в Editable Poly (Редактируемая полигональная поверхность) и еще раз примените модификатор SimCloth3. Не забудьте проконтролировать, чтобы был установлен флажок Check for intersections (Предотвратить пересечение) — он предотвращает появление самопересечений полигонов ткани. Если при просчете динамики программа остановится и выдаст предупреждение об ограничении пересечений, увеличьте значение параметра Substeps (Дополнительные шаги) в свитке Globals (Глобальные). Расположите покрывало так, как показано на рис. 3.12.

Рис. 3.11

Покрывало, трансформированное вертикально

Рис. 3.12 Положение покрывала после вращения